首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper presents a finite element topology optimization framework for the design of two‐phase structural systems considering contact and cohesion phenomena along the interface. The geometry of the material interface is described by an explicit level set method, and the structural response is predicted by the extended finite element method. In this work, the interface condition is described by a bilinear cohesive zone model on the basis of the traction‐separation constitutive relation. The non‐penetration condition in the presence of compressive interface forces is enforced by a stabilized Lagrange multiplier method. The mechanical model assumes a linear elastic isotropic material, infinitesimal strain theory, and a quasi‐static response. The optimization problem is solved by a nonlinear programming method, and the design sensitivities are computed by the adjoint method. The performance of the presented method is evaluated by 2D and 3D numerical examples. The results obtained from topology optimization reveal distinct design characteristics for the various interface phenomena considered. In addition, 3D examples demonstrate optimal geometries that cannot be fully captured by reduced dimensionality. The optimization framework presented is limited to two‐phase structural systems where the material interface is coincident in the undeformed configuration, and to structural responses that remain valid considering small strain kinematics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This work details a computational framework for gradient‐based optimization of a non‐linear flapping wing structure with a large number of design variables, where analytical sensitivities of the unsteady finite element system are computed using the adjoint method. Two techniques are used to reduce the large computational cost of this structural design process. The first projects the finite element system onto a reduced basis of POD modes. The second uses a monolithic time formulation with spectral elements, and can be used to compute only the desired time‐periodic response. Results are given in terms of the trade‐off between accuracy and computational efficiency of these methods for both system response and adjoint computations, for a variety of mesh/time step refinements, degrees of non‐linearity (i.e. weakly or strongly non‐linear), and harmonic content. The work concludes with the structural design of a flapping wing: the elastic deformation at the wingtip is minimized through the flapping stroke by varying the thickness of each finite element. Significant improvements in computational cost are obtained at little expense to the accuracy of the results obtained via design optimization. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

3.
The aim of this paper is to apply a Helmholtz‐type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology optimization require information about the neighbor cells, which is difficult to obtain for fine meshes or complex domains and geometries. The complexity of the problem increases further in parallel computing, when the design domain is decomposed into multiple non‐overlapping partitions. Obtaining information from the neighbor subdomains is an expensive operation. The proposed filter technique requires only mesh information necessary for the finite element discretization of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz‐type differential equation with homogeneous Neumann boundary conditions. The properties of the filter are demonstrated for various 2D and 3D topology optimization problems in linear elasticity, solved on serial and parallel computers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we present a hierarchical optimization method for finding feasible true 0–1 solutions to finite‐element‐based topology design problems. The topology design problems are initially modelled as non‐convex mixed 0–1 programs. The hierarchical optimization method is applied to the problem of minimizing the weight of a structure subject to displacement and local design‐dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non‐convex topology design problems are equivalently reformulated as convex all‐quadratic mixed 0–1 programs. This reformulation enables the use of methods from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The computational bottleneck of topology optimization is the solution of a large number of linear systems arising in the finite element analysis. We propose fast iterative solvers for large three‐dimensional topology optimization problems to address this problem. Since the linear systems in the sequence of optimization steps change slowly from one step to the next, we can significantly reduce the number of iterations and the runtime of the linear solver by recycling selected search spaces from previous linear systems. In addition, we introduce a MINRES (minimum residual method) version with recycling (and a short‐term recurrence) to make recycling more efficient for symmetric problems. Furthermore, we discuss preconditioning to ensure fast convergence. We show that a proper rescaling of the linear systems reduces the huge condition numbers that typically occur in topology optimization to roughly those arising for a problem with constant density. We demonstrate the effectiveness of our solvers by solving a topology optimization problem with more than a million unknowns on a fast PC. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In a companion paper, the effects of approximations in the flexural‐torsional stability analysis of beams was studied, and it was shown that a second‐order rotation matrix was sufficiently accurate for a flexural‐torsional stability analysis. However, the second‐order rotation matrix is not necessarily accurate in formulating finite element model for a 3‐D non‐linear analysis of thin‐walled beams of open cross‐section. The approximations in the second‐order rotation matrix may introduce ‘self‐straining’ due to superimposed rigid‐body motions, which may lead to physically incorrect predictions of the 3‐D non‐linear behaviour of beams. In a 3‐D non‐linear elastic–plastic analysis, numerical integration over the cross‐section is usually used to check the yield criterion and to calculate the stress increments, the stress resultants, the elastic–plastic stress–strain matrix and the tangent modulus matrix. A scheme of the arrangement of sampling points over the cross‐section that is not consistent with the strain distributions may lead to incorrect predictions of the 3‐D non‐linear elastic–plastic behaviour of beams. This paper investigates the effects of approximations on the 3‐D non‐linear analysis of beams. It is found that a finite element model for 3‐D non‐linear analysis based on the second‐order rotation matrix leads to over‐stiff predictions of the flexural‐torsional buckling and postbuckling response and to an overestimate of the maximum load‐carrying capacities of beams in some cases. To perform a correct 3‐D non‐linear analysis of beams, an accurate model of the rotations must be used. A scheme of the arrangement of sampling points over the cross‐section that is consistent with both the longitudinal normal and shear strain distributions is needed to predict the correct 3‐D non‐linear elastic–plastic behaviour of beams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of the present study is to show that the numerical instability characterized by checkerboard patterns can be completely controlled when non‐conforming four‐node finite elements are employed. Since the convergence of the non‐conforming finite element is independent of the Lamé parameters, the stiffness of the non‐conforming element exhibits correct limiting behaviour, which is desirable in prohibiting the unwanted formation of checkerboards in topology optimization. We employ the homogenization method to show the checkerboard‐free property of the non‐conforming element in topology optimization problems and verify it with three typical optimization examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The paper presents a means of determining the non‐linear stiffness matrices from expressions for the first and second variation of the Total Potential of a thin‐walled open section finite element that lead to non‐linear stiffness equations. These non‐linear equations can be solved for moderate to large displacements. The variations of the Total Potential have been developed elsewhere by the authors, and their contribution to the various non‐linear matrices is stated herein. It is shown that the method of solution of the non‐linear stiffness matrices is problem dependent. The finite element procedure is used to study non‐linear torsion that illustrates torsional hardening, and the Newton–Raphson method is deployed for this study. However, it is shown that this solution strategy is unsuitable for the second example, namely that of the post‐buckling response of a cantilever, and a direct iteration method is described. The good agreement for both of these problems with the work of independent researchers validates the non‐linear finite element method of analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with topology optimization of load‐carrying structures defined on discretized continuum design domains. In particular, the minimum compliance problem with stress constraints is considered. The finite element method is used to discretize the design domain into n finite elements and the design of a certain structure is represented by an n‐dimensional binary design variable vector. In order to solve the problems, the binary constraints on the design variables are initially relaxed and the problems are solved with both the method of moving asymptotes and the sparse non‐linear optimizer solvers for continuous optimization in order to compare the two solvers. By solving a sequence of problems with a sequentially lower limit on the amount of grey allowed, designs that are close to ‘black‐and‐white’ are obtained. In order to get locally optimal solutions that are purely {0, 1}n, a sequential linear integer programming method is applied as a post‐processor. Numerical results are presented for some different test problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The topology design optimization of ‘three‐dimensional geometrically‐non‐linear’ continuum structures is still difficult not only because of the size of the problem but also because of the unstable continuum finite elements that arise during the optimization. To overcome these difficulties, the element connectivity parameterization (ECP) method with two implementation formulations is proposed. In ECP, structural layouts are represented by inter‐element connectivity, which is controlled by the stiffness of element‐connecting zero‐length links. Depending on the link location, ECP may be classified as an external ECP (E‐ECP) or an internal ECP (I‐ECP). In this paper, I‐ECP is newly developed to substantially enhance computational efficiency. The main idea in I‐ECP is to reduce system matrix size by eliminating some internal degrees of freedom associated with the links at voxel level. As for ECP implementation with commercial software, E‐ECP, developed earlier for two‐dimensional problems, is easier to use even for three‐dimensional problems because it requires only numerical analysis results for design sensitivity calculation. The characteristics of the I‐ECP and E‐ECP methods are compared, and these methods are validated with numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In spite of the success of the element‐density‐based topology optimization method in many problems including multiphysics design problems, some numerical difficulties, such as temperature undershooting, still remain. In this work, we develop an element connectivity parameterization (ECP) formulation for the topology optimization of multiphysics problems in order to avoid the numerical difficulties and yield improved results. In the proposed ECP formulation, finite elements discretizing a given design domain are not connected directly, but through sets of one‐dimensional zero‐length links simulating elastic springs, electric or thermal conductors. The discretizing finite elements remain solid during the whole analysis, and the optimal layout is determined by an optimal distribution of the inter‐element connectivity degrees that are controlled by the stiffness values of the links. The detailed procedure for this new formulation for multiphysics problems is presented. Using one‐dimensional heat transfer models, the problem of the element‐density‐based method is explained and the advantage of the ECP method is addressed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In the sheet metal forming process, forming the final desired shape is difficult to obtain due to wrinkling, tearing, failure of material, etc. Various conditions of the forming process should be controlled for the desired shape. These conditions are the velocity of the punch, the friction factor, the blank holding force, the initial shape of the blank and others. Many researchers have conducted studies to predetermine the initial blank shape. The structural optimization technique is one of them. Non‐linear response structural optimization is required because non‐linearities are involved in the analysis of the metal forming process. When the conventional method is utilized, the cost is extremely high due to repeated non‐linear analysis for function and sensitivity calculation. In this paper, the equivalent static loads (ESLs) method is used to determine the blank shape which leads to the final desired shape and reduced wrinkling. The ESLs method is a structural optimization method where non‐linear dynamic loads are transformed into ESLs, and these ESLs are utilized as external loads in linear response optimization. The design is updated in linear response optimization. Non‐linear analysis is performed with the updated design and the process proceeds in a cyclic manner. An optimization formulation is defined for the examples, the formulated problems are solved to verify the proposed method and the results are discussed. Non‐linear analysis is performed using the commercial software LS‐DYNA, NASTRAN is used for calculating the ESLs and linear response optimization, and an interface program for LS‐DYNA and NASTRAN is developed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Bilateral filtering for structural topology optimization   总被引:1,自引:0,他引:1  
Filtering has been a major approach used in the homogenization‐based methods for structural topology optimization to suppress the checkerboard pattern and relieve the numerical instabilities. In this paper a bilateral filtering technique originally developed in image processing is presented as an efficient approach to regularizing the topology optimization problem. A non‐linear bilateral filtering process leads to a suitable problem regularization to eliminate the checkerboard instability, pronounced edge preserving smoothing characteristics to favour the 0–1 convergence of the mass distribution, and computational efficiency due to its single pass and non‐iterative nature. Thus, we show that the application of the bilateral filtering brings more desirable effects of checkerboard‐free, mesh independence, crisp boundary, computational efficiency and conceptual simplicity. The proposed bilateral technique has a close relationship with the conventional domain filtering and range filtering. The proposed method is implemented in the framework of a power‐law approach based on the optimality criteria and illustrated with 2D examples of minimum compliance design that has been extensively studied in the recent literature of topology optimization and its efficiency and accuracy are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the problem of optimizing a non‐linear aeroelastic system in steady‐state conditions, where the structure is represented by a detailed finite element model, and the aerodynamic loads are predicted by the discretization of the non‐linear Euler equations. We present a solution method for this problem that is based on the three‐field formulation of fluid–structure interaction problems, and the adjoint approach for coupled sensitivity analysis. We discuss the computational complexity of the proposed solution method, describe its implementation on parallel processors, and illustrate its computational efficiency with the aeroelastic optimization of various wings. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The application of the element density‐based topology optimization method to nonlinear continuum structures is limited to relatively simple problems such as bilinear elastoplastic material problems. Furthermore, it is very difficult to use analytic sensitivity when a commercial nonlinear finite element code is used. As an alternative to the element density formulation, the element connectivity parameterization (ECP) formulation is developed for the topology optimization of isotropic‐hardening elastoplastic or hyperelastic continua by using commercial software. ECP varies the stiffness of zero‐length linear elastic links that connect design domain‐discretizing finite elements. Unloading was not considered. But the advantages of ECP in material‐nonlinear problems were demonstrated: considerably simple analytic sensitivity calculation using a commercial code and simple link stiffness penalization regardless of nonlinear material behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper an adaptive method for the analysis of thermomechanical coupled multi‐body contact problems is presented. The method is applied to non‐linear elastic solids undergoing finite (thermal) deformations. The contact model considers non‐linear pressure‐dependent heat flux as well as frictional heating in the interface. A time–space‐finite element discretization of the governing equations is formulated including unilateral constraints due to contact. A staggered solution algorithm has been constructed that allows an independent spatial discretization of the coupled subproblems. A posteriori projection‐based error estimators, which enforce implicitly the special boundary conditions due to thermal contact, are used to control the spatial discretization as well as the adaptive time stepping. Numerical examples are presented to corroborate the applicability of the adaptive algorithm to the considered problem type. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We present an original method for multimaterial topology optimization with elastic and thermal response considerations. The material distribution is represented parametrically using a formulation in which finite element–style shape functions are used to determine the local material properties within each finite element. We optimize a multifunctional structure that is designed for a combination of structural stiffness and thermal insulation. We conduct parallel uncoupled finite element analyses to simulate the elastic and thermal response of the structure by solving the two-dimensional Poisson problem. We explore multiple optimization problem formulations, including structural design for minimum compliance subject to local temperature constraints so that the optimized design serves as both a support structure and a thermal insulator. We also derive and implement an original multimaterial aggregation function that allows the designer to simultaneously enforce separate maximum temperature thresholds based upon the melting point of the various design materials. The nonlinear programming problem is solved using gradient-based optimization with adjoint sensitivity analysis. We present results for a series of two-dimensional example problems. The results demonstrate that the proposed algorithm consistently converges to feasible multimaterial designs with the desired elastic and thermal performance.  相似文献   

19.
This paper presents a new spatially curved‐beam element with warping and Wagner effects that can be used for the non‐linear large displacement analysis of members that are curved in space. The non‐linear behaviour of members curved in space shows that the Wagner effects are substantial in the large twist rotation analysis. Most existing finite beam element models, such as ABAQUS and ANSYS cannot predict the non‐linear large displacement response of members curved in space correctly because the Wagner effects, viz. the Wagner moment and the corresponding finite strain terms, have not been considered in these finite beam elements. As a consequence, these finite beam elements do not provide correct predictions for the out‐of‐plane buckling and postbuckling behaviour of arches as well. In this paper, the symmetric tangent stiffness matrix has been derived based on the finite rotations parameterized by the conventional displacements. The warping and Wagner effects: both the Wagner moment and the corresponding finite strain terms and their constitutive relationship, are included in the spatially curved‐beam element. Two components of the initial curvature, the initial twist and their interactions with the displacements are also considered in the spatially curved‐beam element. This ensures that the large twist rotation analysis for the members curved in space is accurate. Comparisons with existing experimental, analytical and numerical results show that the spatially curved‐beam element is accurate and efficient for the non‐linear elastic analysis of curved members, buckling and postbuckling analysis of arches, and in its ability to predict large deflections and twist rotations in more arbitrarily curved members. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A transient finite strain viscoplastic model is implemented in a gradient‐based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark‐beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capability of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. The numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号