首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern wire rod rolling is characterized by high finish rolling speed and requirements on close tolerances and well defined mechanical properties of the rolled product. In some senses the technological development has run in advance of the scientific knowledge of the phenomena involved in the process. Thus at present no laboratory mill is in operation for rolling speeds above 40 m/s. The modern technologies on thermomechanical rolling and sizing give certain phenomena difficult to handle for the mills, and especially finish rolling at low reductions and temperatures performed in three‐roll units sometimes give surprises on grain size distribution and allied properties of the wire rod. Traditional plastic analysis has proven not to be sufficient to analyse the processes involved in high speed rolling of close tolerance wire rod with well‐defined properties. Simulations by means of the Finite Element Method on the other hand have proven to be a powerful tool for this kind of analysis, even if the initial difficulties in creating a suitable model require certain care. Also the calculation capacity must be sufficient for making relevant three‐dimensional thermomechanically coupled studies. The high speed rolling of wire rod can be simulated under full‐scale conditions, and with correct boundary condition in the high‐speed laboratory wire rod mill at Örebro University. By utilizing both conventional two‐high stands and three‐roll units it has been possible to design a laboratory rolling mill for any rolling condition that can occur in wire rod mills. Rolling speeds up to 80 m/s can be combined with thermomechanical rolling in any interesting temperature range, and with total flexibility of reductions. Further, fundamental studies of high‐speed deformations can be performed in full‐scale and with correct frictional conditions and geometries. Thanks to the flexibility in layout and combinations with other equipment in the laboratory also other processes can be simulated.  相似文献   

2.
采用自制热拉拔装置将AZ61镁合金粗挤压棒材拉拔成丝,研究拉拔温度、道次变形量等热拉拔工艺对单道次拉拔后丝材组织、力学性能的影响规律,并对拉拔过程中断丝情况进行统计,确定能够实现稳定热拉拔的工艺参数范围.结果表明,当道次变形量为15%时,随着温度的升高,丝材中的孪晶组织逐渐减少,强度逐渐降低,延伸率逐渐升高,丝材在350℃时发生动态再结晶.当拉拔温度一定时,随着道次变形量的增加,丝材的加工硬化程度增加,强度、硬度升高,延伸率下降.但当拉拔温度为300℃,道次变形量增加到25%时,丝材发生动态再结晶,使强度硬度下降,延伸率升高.过高的拉拔温度和道次变形量会使丝材发生断裂,随着温度的提高,丝材所能承受的最大变形量逐渐减小.  相似文献   

3.
The work-hardening characteristics of metals deeply affect the analytical and numerical analyses of their forming processes and especially the end mechanical properties of the products manufactured. The effects of strain, strain rate, and temperature on work hardening have received wide attention in the literature, but the role of the strain path has been far less studied, except for sheet-metal forming. Strain-path effects seem to have never been analyzed for bulk-forming processes, such as axisymmetric drawing. In the present work, drawn bars were considered as composed of concentric layers strained along varying strain paths. The tensile von Mises effective stress, effective-strain curves of two layers and of the full cross section of the drawn material, were experimentally determined. The flow behavior of these regions was compared to that resulting from pure monotonic-tensile processing. The AISI 420 and 304 stainless steels revealed a strain path and a material effect on their work-hardening characteristics. Higher or lower hardening rates were observed in axisymmetric drawing, as compared to pure tension. These phenomena were interpreted by considering the dislocation arrangements caused by initial drawing straining and their subsequent restructuring, associated with the strain-path change represented by tension after drawing. The analytical and numerical analyses of the tensile behavior of metals following axisymmetric drawing must consider the strain-path effects on the constitutive equations laws and on the hardening behavior of the material. The redundant deformation factor in axisymmetric drawing (φ) plays a central role in the analysis of the process and on the prediction of the mechanical properties of the final products. This parameter was evaluated considering (a) the strain distribution in the bar cross section caused by drawing or (b) the mechanical properties of the drawn bars. The comparison of the results from these two approaches allowed an unexplained interpretation of a material effect on this parameter.  相似文献   

4.
设计了两种不同的拉拔工艺(减面率/%:工艺一:34.45,31.67,19.00,20.08;工艺二:20.10,19.28,34.64,31.41),研究了道次减面率配置对304H不锈钢丝拉拔过程中马氏体相变、磁性能及力学性能的影响。结果表明:当钢丝总应变量相同时,大减面率配置在前更有利于马氏体转变,其饱和磁化强度更大,反之则马氏体转变量较少,饱和磁化强度较小。钢丝的强度与拉拔真应变呈线性相关,其大小只与拉拔总应变量相关。本试验中,前两个道次减面率为20.10%和19.28%,后两个道次减面率为34.64%和31.41%时,马氏体转变量较少,钢丝的饱和磁化强度较低。  相似文献   

5.
The application of new materials to produce forged connecting parts is presented in this work. Particular attention is put on modern bainitic steels due to their increased ductile and strength properties, which influence the behaviour of final products under further exploitation conditions. Bainitic steels do not require a series of thermo‐mechanical operations to obtain these elevated properties, which is one of the advantages of this material. Experimental analysis and numerical simulations of steel behaviour during multi‐step cold forging operations are described in this paper. Since it is one of the possible fracture initiation mechanisms, strain localization development during cold forging is investigated in detail. Conventional constitutive models used in finite element programs have limitations in modeling stochastic and discontinuous phenomena that are responsible for strain localization. The cellular automata model is used as constitutive law in this work to overcome these difficulties and investigate material flow during multi‐stage cold forging operations. Connection of the cellular automata (CA) and finite element (FE) methods creates a so‐called multi‐scale CAFE model. The main aspects of the model are described briefly in this paper. The experimental part of this work supports the numerical investigation. Comparison of the parameters measured and predicted by the CAFE model is presented and discussed as well.  相似文献   

6.
A comparative study was conducted on the effects of lamellar cementites and globular cementites on the cold drawing process and the mechanical properties of pearlitic wire steel, with the help of metallographic microscope, scanning electron microscope, transmission electron microscope, tensile tester and hardness tester. The lamellar cementites showed the deformation capacity to some extent during the cold drawing process. As the drawing strain increased, the pearlitic wire with globular cementites evolved into the fibrous form gradually and no obvious defects were found in the microstructure. The globular cementites turned to the drawing direction without any deformation of itself during the deformation process. And micro- cracks occurred in the cementite/ferrite interface due to stress concentration caused by pinning dislocations in spherical cementites. The strength and hardness of both pearlitic wires gradually increased as the drawing strain rose. And the pearlitic wire with lamellar cementites had a higher drawing hardening rate. The ferrite <110> texture formed in both pearlitic wires during the cold drawing process. Compared with the globular pearlite, the pearlitic wire with lamellar cementites had higher ferrite <110> texture intensity. And the difference of their ferrite <110> texture intensity became bigger and bigger as the drawing strain increased.  相似文献   

7.
77MnA线材拉拔和卷取断裂分析   总被引:2,自引:0,他引:2  
采用光学金相显微镜和扫描电子显微镜等分析手段,对77MnA线材拉拔和卷取断裂进行分析,分析结果表明:77MnA线材表面局部区域严重的冷变形组织和马氏体硬化层是导致线材在冷拉拔和卷取过程中断裂的主要原因,这种组织是在拉拔过程中形成的,主要与原始盘条不圆度超标有关。  相似文献   

8.
大应变变形珠光体钢丝微观组织结构的研究   总被引:2,自引:0,他引:2  
涂益友  蒋建清  蔡磊  卞建春 《钢铁》2008,43(7):72-0
  采用扫描电镜(SEM)观察了以不同应变量拉拔变形后SWRH72A钢丝的显微组织变化,并测量了钢丝力学性能、磁学性能随应变量增大的变化趋势。试验结果表明,随着拉拔变形应变量的增大,珠光体片层间距逐渐减小,钢丝强度随之升高。由于变形应变量的增大,微缺陷密度升高,钢丝矫顽力Hc和剩余磁化强度Mr都随之变大。而应变量较小时,钢丝比饱和磁化强度基本不变,为227.87 emu/g。当应变量增大到2.60时,样品的比饱和磁化强度升高到233.55 emu/g,计算得知钢丝中渗碳体的质量分数由未变形状态的10.8%降至8.6%。  相似文献   

9.
A method of continuous deformational nanostructuring of wire is described. In the method, a continuously moving wire is subjected simultaneously to tensile deformation in drawing, flexural deformation on passing through a roller system, and torsional deformation. This combination permits wide variation in its mechanical properties, ensuring both high strength and plasticity. The benefits of such deformation are the use of a tool already employed in the production of metal components; compatibility with the speeds of coarse and moderate wire drawing; and simplicity of the equipment. Laboratory apparatus for this method is described. Carbon steel 50 wire is selected for investigation, since it in great demand. The chemical composition and mechanical properties of the wire in the initial state are described. Experiments are conducted to investigate the effectiveness of the proposed differential nanostructuring in producing ultrafine-grain structure in the wire. The deformation conditions of the wire are described, as well as the drawing process. The transverse and longitudinal microstructure of the carbon steel 50 wire at the surface and in the center after different types of deformational treatment is investigated. In the experiments, the influence of the type of deformational treatment on the microstructure of the steel and its anisotropy over the wire cross section is established. The compliance of the wire’s mechanical properties with current standards is verified. After all types of treatment, its mechanical properties are consistent with State Standard GOST 17305–91. Metallographic data and mechanical test results after combined deformational treatment indicate that such combinations of deformation provide a promising approach to creating ultrafine-grain structure in carbon wire.  相似文献   

10.
推动模型在棒线材轧制过程模拟中的应用   总被引:4,自引:0,他引:4  
原思宇  张立文  齐民  甄玉  郭书奇 《钢铁》2005,40(12):50-54
基于三维热一机耦合有限元分析方法建立了刚性体推动模型,模拟棒线材多道次连轧过程。刚性体推动模型与常规有限元模型的比较结果说明刚性体推动模型可以在获得相同的精度前提下,显著地提高运算效率。将所建立的有限元模型应用于304不锈钢粗轧过程的数值模拟,得到了轧件6道次连轧过程的温度场、应变场和轧件的变形过程,并比较了各道次的轧制力模拟结果和轧机许用轧制力。温度场的模拟结果与测量结果的比较证明了模型的可靠性。  相似文献   

11.
The aim of the study is to clarify how far it is possible to describe the mechanical behavior of novel TRIP‐Steel/Mg‐PSZ composite open‐cell foam structures using beam networks generated from random tessellations. Conventional compression tests were performed with various foam samples. Furthermore, the deformation of open‐cell composite foams was observed as well by X‐ray computed tomography (XCT). Up to a compressive strain of 20% different stages of deformation could be observed. Respective bulk samples were manufactured by powder metallurgy and tested in order to determine the mechanical properties of the bulk material. Numerical simulations were employed based on the suitable modeling of foams exposed to mechanical loading. The predictions of the simulation are compared with the results of the deformation experiments.  相似文献   

12.
The mechanical properties of austenitic high Mn Twinning Inducted Plasticity (TWIP) steel provide an excellent combination of strength and ductility when tested in uni‐axial tension. The performance of TWIP steel during some critical formability tests such as deep drawing, bulge test and cutting edge stretching has not yet been studied extensively. In this contribution, the stretch‐flangeability of Fe18Mn0.6C1.5Al TWIP steel and Ti Interstitial‐Free (IF) steel were studied by means of hole expansion test. In‐situ strain analysis and Infra‐red (IR) thermography were carried out during the test. It was found that TWIP steel, despite having a higher uniform elongation in uniaxial tension, had poorer hole expansion properties than Ti IF steel. Strain distribution analysis revealed that the hole edge deformed in a deep drawing mode which was similar to a tensile deformation. Away from the hole edge, the deformation mode changed gradually from deep drawing to stretch forming mode. The IR‐thermography of TWIP steel revealed a high degree of adiabatic heating which was absent in the case of IF steel. The crack associated with the edge fracture revealed a local temperature increase at the crack tip of up to 92°C. Two types of hole edge preparations were studied. A high quality hole edge finish resulted in a better hole expansion performance. The fractography of the crack plane surface of TWIP steel and Ti IF were also studied by SEM, and revealed a plastic failure mode in both cases.  相似文献   

13.
For better processing performance of high carbon low alloy steel wire rod,an investigation about the influence of cementite lamellar spacing on wire ’easy drawing’ performance is completed.It is pointed out that too thin cementite lamellar spacing(<80 um) reduces the strain hardening level of wire drawing, and reduce the torsion performance of drawn wire at same time.For the wire or wire rod from industrial production,compared with the micro-structure with troostite,the micro-structure with sorbite or sorbite mixed with pearlite is more suitable to the drawing process with high reduction ratio.  相似文献   

14.
在开发一种高氮无镍奥氏体不锈钢线材时,热拔线材表面出现了大量的裂纹。通过金相、扫描电子显微分析和能谱检测,对其开裂原因进行研究。发现线材的表面裂纹基本垂直于拉拔方向,裂纹在表面产生,之后向线材内部发展。线材表层存在着大量的富Cr和N的氮化物析出,沿晶析出的析出相,会导致孔洞形成,这些孔洞相连,形成微裂纹,最终导致沿晶开裂。通过加长加热区、提高拉拔速率保证了线材表面温度,避免了表面裂纹的产生,获得了质量满足要求的高氮无镍奥氏体不锈钢线材,并最终给出了建议的热拔工艺。  相似文献   

15.
郭慧英  张宇  许红梅  王银柏 《钢铁》2014,49(10):66-70
 采用Gleeble-3800热模拟试验机研究了1.25Cr-0.5Mo气保焊丝钢的连续冷却相转变行为(CCT),并在沙钢高线车间进行了该焊丝钢盘条的工业试制。试验结果表明:试样在950 和1 000 ℃ 2种变形温度下均得到铁素体(F)和马氏体(M)两相组织,且随变形温度和冷速降低,马氏体含量降低且尺寸减小;现场试制时设定精轧温度为950 ℃,吐丝温度为870~890 ℃,冷却速率为 0.3 ~ 0.5 ℃/s,则制得的盘条组织为F+M,强度低于830 MPa,其拉拔深加工时制丝顺畅,未发生断丝。  相似文献   

16.
The numeric simulation of thermo‐mechanical hot forming processes and the modelling of the structure development and the mechanical properties of complex metallic materials serve for both the optimization of forming processes and the increase of process reliability. To meet close process windows, predictions of the formability of the material as function of the process conditions and material history are required as well. Lifetime evaluation of the tools is made possible from coupled computation of workpiece and tool loads. Material and damage models in use must be adapted on the basis of laboratory experiments and advanced analysis methods.  相似文献   

17.
Hole expansion is one of the most important properties describing the formability of steel sheets, especially those used in automotive industry. In order to determine and emphasize the influence of hole edge conditions and hole surface quality on the results of standardized hole expansion tests, different hole preparation methods such as hole punching, hole drilling and wire cutting were applied to the industrially produced dual–phase and complex–phase steel grades DP800 and CP800. Results of hole expansion testing were discussed with respect to the impact of deformation introduced into the material during the hole preparation and to the material microstructure and mechanical properties. The damage characteristics of every method as well as the fracture surfaces were investigated in detail via light optical microscopy (LOM) as well as scanning electron microscopy (SEM). Qualitative and quantitative analyses of microstructure combined with microhardness measurements were used for the interpretation of the results and are correlated with the mechanical properties and the formability characteristics of the investigated steel grades.  相似文献   

18.
通过合理控制钢加热温度、轧制温度、变形量、变形速度及冷却速度等控轧控冷技术手段,在国产全连续式高速无扭线材轧钢生产线上,对高碳钢77B、82B线材的控轧控制冷工艺进行探索,通过不断改变工艺参数及采取多项措施,其产品力学性能基本达到预期效果,为批量生产提供了依据。  相似文献   

19.
 硬线钢除了要求良好的力学性能,还要求良好的加工性能,但硬线钢盘条在拉拔过程中常发生断丝,给加工的连续性带来巨大危害。为了减少硬线钢的拉拔断丝,对其拉拔断裂机理进行了研究,并开展了相应的连铸工艺优化。首先对82B硬线钢拉拔断丝试样进行了分析,通过对断裂试样的断口和纵剖面分析,结合对应的连铸坯内部质量检测,得出连铸坯中心缺陷及偏析对硬线钢拉拔断裂的影响机制为促进了盘条中心渗碳体膜的生成,导致了裂纹的产生和扩展。然后通过施加电流为350 A、频率为6.0 Hz的连铸凝固末端电磁搅拌,降低浇铸时钢水过热度至30 ℃以下等措施,82B硬线钢连铸坯中心缩孔和中心偏析度分别降低至0.5级和1.08以下,82B硬线钢拉拔断丝率由优化前的10~15 次/百t显著下降到4~5 次/百t。  相似文献   

20.
胡显军  周立初  王雷  方峰 《钢铁》2016,51(5):62-68
 用金相显微镜、扫描电镜、透射电镜、X射线衍射仪、同步热分析仪研究了冷拉拔形变对珠光体钢丝奥氏体化热处理过程和组织的影响。经过冷拉拔剧烈塑性变形后,珠光体组织呈纤维状,其片层沿拉拔轴向排列,厚度剧烈减薄,铁素体<110>丝织构强度达到饱和。经剧烈塑性变形的珠光体在奥氏体化转变时,奥氏体形核更早、更密集,且沿轴向生长;在完成等温转变后,其原奥氏体晶粒、珠光体团尺寸均明显细化,其铁素体<110>丝织构一定程度遗传到了相变后的组织中,但沿拉拔轴向排列的片层形貌特点并未得到遗传。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号