首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为了提高复杂环境下移动机器人的精准导航作用,提出了移动机器人路径规划的改进粒子群优化(PSO)算法,即利用粒子个体极值的加权平均值,同时加入惯性权重.建立了移动机器人工作环境的栅格模型,利用Matlab软件进行移动机器人路径规划仿真分析.仿真结果表明:改进后的粒子群算法容易使粒子移动到最佳位置,加强了全局寻优能力,在复杂环境中搜索路径性能优于传统算法.  相似文献   

2.
基于粒子群优化算法的移动机器人全局路径规划   总被引:27,自引:0,他引:27  
孙波  陈卫东  席裕庚 《控制与决策》2005,20(9):1052-1055
提出了一种基于粒子群优化算法的移动机器人全局路径规划方法.该方法首先进行环境地图建模,通过坐标变换在路径的起点与终点之间建立新地图,然后利用粒子群优化算法获得一条全局最优路径.该方法模型简单,算法复杂度低,收敛速度快,而且模型不依赖于障碍物的形状.仿真实验证实了该方法的有效性.  相似文献   

3.
基于粒子群算法的移动机器人路径规划   总被引:32,自引:1,他引:32  
秦元庆  孙德宝  李宁  马强 《机器人》2004,26(3):222-225
提出一种分步路径规划方法,首先采用链接图建立机器人工作空间模型,用Dijkstra算法求得链接图 最短路径;然后用粒子群算法对此路径进行优化,得到全局最优路径.仿真结果表明:所提方法简便可行,能够满足 移动机器人导航的高实时性要求,是机器人路径规划的一个较好方案.􀁱  相似文献   

4.
针对单一智能优化算法求解机器人路径规划时易陷入局部误区的问题,提出改进粒子群优化算法(GB_PSO)用于机器人路径规划.该算法以粒子群优化算法(particle swarm optimization,PSO)为主体,由于遗传算法(genetic algorithm,GA)和细菌觅食算法(bacterial foraging optimization algorithm,BFO)更新策略所受环境影响的不同,拟合两种环境参数;然后计算粒子与不同环境参数之间的相关性将粒子群划分为两类,分别通过GA的选择、交叉、变异算子和BFO的趋化操作并行加强局部优化;最后通过改进的粒子群更新公式对粒子进行更新,实现机器人全局和局部路径的优化.实验结果表明,改进粒子群优化算法进行路径规划提高了局部和整体的搜索能力,路径规划速度快且路径距离短,同时具备更强的鲁棒性.  相似文献   

5.
基于粒子群三次样条优化的移动机器人路径规划算法   总被引:2,自引:0,他引:2  
针对移动机器人路径规划问题,提出了一种基于粒子群三次样条优化的路径规划方法.借助三次样条 连接描述路径,这样将路径规划问题转化为三次样条曲线的参数优化问题.借助粒子群优化算法快速收敛和全局寻 优特性实现最优路径规划.实验结果表明:所提算法可以快速有效地实现障碍环境下机器人的无碰撞路径规划,规 划路径平滑,利于机器人的运动控制.  相似文献   

6.
为了实现微型足球机器人的平滑最优路径规划,提出了一种结合Ferguson样条路径描述和改进粒子群优化算法的路径规划方法。利用Ferguson样条描述移动机器人路径,将路径规划问题转化为三次样条曲线的参数优化问题,借助改进的具有速度变异的粒子群算法进行路径优化。仿真实验表明,算法可以有效进行障碍环境下机器人的无碰撞路径规划,改进的粒子群算法进行路径优化迭代80次左右即可收敛,规划路径平滑、合理,有一定的实用价值。  相似文献   

7.
针对二维静态环境下移动机器人路径规划问题,该文提出一种改进的粒子群算法求解最优路径。首先,由于传统的粒子群算法初始化粒子时并未考虑到粒子初始位置是否占障碍物空间,没有对占障碍物空间的粒子进行处理,导致粒子初始有效性低下,全局寻优不准确和全局寻优时间长。然后,为解决此问题,在初始化时采用一种修正粒子算法,解决初始时粒子有效性低下的问题。比较传统粒子群算法和该文算法的仿真结果。仿真结果表明,采用这种方法极大限度地增大了初始粒子的有效性,使算法迭代时可以更加快速准确地得到全局最优路径,所提方法有效可行。  相似文献   

8.
基于量子粒子群算法的机器人路径规划   总被引:1,自引:0,他引:1  
提出了一种基于量子粒子群优化算法的移动机器人全局路径规划方法。首先对环境地图进行建模,通过坐标变换在路径的起点与终点之间建立新地图,然后利用量子粒子群优化算法获得一条全局最优路径。该方法模型简单,算法复杂度低,收敛速度快,而且模型不依赖于障碍物的形状。仿真实验证实了该方法的可行性与有效性。  相似文献   

9.
基于改进粒子群算法的移动机器人路径规划方法研究   总被引:1,自引:1,他引:0  
针对移动机器人传统路径规划算法效率不高、寻优能力差等问题,本文提出一种基于改进粒子群优化算法(PSO)的移动机器人路径规划方法。该方法采用神经网络训练碰撞罚函数,得到无碰撞路径,然后采用粒子群优化算法解决路径的最优问题。利用神经网络实现大量的并行和分布计算,发挥PSO简单、容易实现的优点,提高了路径规划的计算效率和可靠性。仿真结果表明,这种新路径规划方法是可行且有效的。  相似文献   

10.
刘洁  赵海芳  周德廉 《计算机科学》2017,44(Z11):123-128
为实现移动机器人最优路径规划,提出了一种改进量子行为粒子群的优化算法(LTQPSO)。针对粒子群算法存在过早收敛的问题,利用个体粒子进化速度与群体离散度来动态调整惯性权重,使惯性权重具有自适应性与控制性,从而避免过早收敛;同时将自然选择方法引入传统位置更新公式中,以保持种群的多样性,加强LTQPSO算法的全局搜索能力,加快算法的收敛速度;将改进后的LTQPSO算法应用于移动机器人路径规划中;最后通过理论仿真与移动机器人平台实验验证了该方法的有效性与可行性。  相似文献   

11.
针对在无人作战飞机(UCAV)航路规划中存在的计算复杂和收敛性等问题,该文利用标准粒子群算法原理,在算法搜索过程中引入变异算子,克服了标准算法易陷入局部极值点的不足。利用一组正弦波曲线来构造一个粒子,通过对正弦波个数和幅值的限制,使该方法得到的飞行航路严格经过起始点和目标点,而且满足UCAV的机动性能要求。仿真结果表明该方法简便可行,粒子能较快地收敛于全局最佳航路。  相似文献   

12.
基于混合粒子群优化算法的旅行商问题求解   总被引:2,自引:0,他引:2  
俞靓亮  王万良  介婧 《计算机工程》2010,36(11):183-184,187
针对旅行商问题提出一种混合粒子群优化算法。为了增强算法的局部搜索能力,在粒子群优化算法中加入倒置、对换等局部搜索算法。利用遗传算法全局搜索能力强的特点对用粒子群优化算法求到的解进行优化,对全局最优路径通过消除交叉路径进行优化,以进一步提高混合算法的性能。仿真结果表明,中小规模旅行商问题能够在较少的代数内收敛到较满意解。  相似文献   

13.
薛迎春  孙俊  须文波 《计算机应用》2006,26(9):2068-2070
介绍了一种利用量子行为粒子群算法(QPSO)求解矩形包络的方法。矩形包络是将二维不规则形状样片用它们的最佳包络矩形来代替,是服装排料的第一步。实验结果表明量子行为粒子群算法比粒子群算法,遗传算法能更好地解决求二维不规则形状样片的矩形包络的问题。  相似文献   

14.
对学生学习的路径控制在智能化教学系统中是一个重要的问题。该文以知识空间理论为基础建立了学习状态空间,通过改进的微粒群算法对该学习状态空间的学习路径进行最优化控制,并利用死亡惩罚函数法把约束最优化学习路径问题转化成了无约束的最优化学习路径控制问题,引入交换子和交换序的概念对微粒群算法进行改进。在结果分析中,通过动态参数法,即动态变化交换子保留概率的方法提高微粒群的收敛效果,达到了最优化学习路径控制的目的。  相似文献   

15.
粒子群优化算法存在早熟收敛和搜索精度较低的问题.为此,提出一种基于自适应混沌粒子群的优化算法.采用自适应权重和遗传算法中的交叉、变异操作更新粒子群,增加种群粒子的多样性,运用早熟判断机制判断粒子的当前状态,当粒子处于早熟状态时,利用混沌搜索的方法引导群体快速跳出局部最优.仿真结果表明,该算法可以有效解决粒子群算法的早熟问题,提高搜索精度和收敛速度.  相似文献   

16.
丁蕊  董红斌  冯宪彬 《计算机工程》2009,35(17):201-203
提出一种混合粒子群遗传分类算法,根据种群中个体的相互关系,采用“家族”思想对算法进行综合调控,利用家族交叉操作进行微调,并在各家族中引入粒子群思想的交叉算子,兼顾收敛速度和多样性2项指标。根据分类问题的特点,设计相应的编码方式和适应度函数,用播种的方式生成初始种群。对国际通用检验分类效果的数据集进行分类。实验结果证明,该算法的分类效果优于其他算法。  相似文献   

17.
李亚非  曹长虎 《计算机工程》2011,37(16):167-169
为充分发挥粒子群优化算法和遗传算法各自的优势,提出一种新的基于粒子群和遗传算法的协同进化算法,并将其应用于聚类分析。通过构建2个相互竞争的种群,采用相对适应度度量方法,在一个纯自举的过程中产生最优竞争个体。在现实世界数据集上的仿真实验表明,该算法在收敛精度方面优于基于遗传算法的聚类方法和基本粒子群优化聚类算法。  相似文献   

18.
移动机器人的路径规划是机器人研究的重要领域。文中旨在研究遗传算法对于机器人路径规划问题的适用性。对于路径规划的目标,提出了基于路径长度、路径平滑度和路径安全度等因素综合衡量的方法,并在传统的遗传算法的交叉、变异操作的基础上,针对路径规划问题的特点,增加了捷径寻找、障碍避让、平滑优化等方法。实验表明,此算法在存在形状复杂的障碍物的静态环境中表现良好,其效率与准确性皆满足机器人路径规划的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号