首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用动态流变学实验对浇注高聚物黏结炸药(PBX)固化过程的宏观性质表现进行了测试。结果表明,PBX的储能模量(G′)和损耗模量(G″)随固化时间逐渐增大,且G′逐渐接近并超过G″,二者最终趋于稳定。通过分子动力学方法模拟了PBX黏结剂端羟基聚丁二烯(HTPB)与交联剂甲苯二异氰酸酯(TDI)之间固化反应的微观过程,并对体系固化各阶段的力学性能进行了计算。模拟结果与流变实验结果之间具有较高的一致性,说明分子动力学模拟可为PBX的固化行为研究提供微观信息。  相似文献   

2.
吴兴宇  崔庆忠  徐军 《含能材料》2016,24(11):1097-1101
为了解决工程应用中遇到的固化终点问题,采用等温与非等温差示扫描量热法(DSC法),通过模拟n级反应动力学模型,并根据Kissinger法、Crane法研究了高聚物粘结炸药(PBX)用端羟基聚丁二烯(HTPB)型粘结体系的固化反应动力学。结果表明,HTPB/TDI粘结体系固化反应的表观活化能为54.61kJ·mol~(-1),反应级数为0.87,指前因子为192.80s~(-1),固化反应热Hu为482.87J·g~(-1)。该体系的固化反应过程中存在自催化现象。加入二月桂酸二丁基锡(T12)催化剂后,粘结体系的固化反应速率增大、反应温度降低。拟合出了固化温度与固化时间之间的函数关系,当固化温度取60℃时,求得固化时间约为3.91天,与实际工程应用中的4~6天相符。  相似文献   

3.
固化温度对浇注PBX固化应力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为改进固化工艺,确保浇注高聚物粘结炸药(PBX)的发射安全性,采用自制的间接应力感应器测试了浇注PBX药浆从液态到固态转变过程中应力的变化。研究了固化温度对浇注PBX固化应力的影响。结果表明:热固性浇注PBX固化过程包括从常温到固化温度的快速热膨胀,恒温固化阶段的热膨胀与交联收缩及固化降温时的冷缩变形三个阶段。研究了恒温固化过程中测试瓶的变形。根据变形情况计算了浇注PBX的固化应力。固化温度对PBX变形影响明显。当固化温度为100,90,80,60℃时,浇注PBX在固化过程中的最大热应力分别为2.14,0.72,0.56,0.29 MPa;固化过程的收缩应力分别为0.29,0.25,0.24,0.21 MPa,显示固化温度对恒温阶段固化热应力及收缩应力影响较大,固化温度越高,固化热应力及收缩应力越大。可以根据固化过程的应变-时间曲线,采取前期低温固化以减小固化应力,在固化应力变化平稳的后期升高温度以提高效率的变温固化工艺。  相似文献   

4.
陈春燕  王晓峰  南海 《兵工学报》2021,42(9):1888-1894
为设定多官能团聚叠氮缩水甘油醚(ATP)在聚合物粘结炸药(PBX)中应用时的固化工艺参数,开展ATP基PBX固化测试方法和固化工艺实验研究。采用非等温差示扫描量热法和流变法进行实验,研究ATP基PBX固化过程中热量和储能模量的变化,获得PBX的固化反应动力学方程和固化工艺参数。实验结果表明:流变法可作为表征ATP基PBX固化反应的测试方法,ATP基PBX的固化反应动力学方程为dαdt=2.0×10 19exp [JB<2(]-1.51×10 5RT[JB>2)]α0.42(1-α) 1.30,α为固化度,t为时间,R为气体常数,T为温度。ATP基PBX直接在60 ℃恒温固化时PBX内部出现大量气孔,采用先30 ℃后60 ℃的阶梯固化工艺时PBX内部无气孔;ATP基PBX 30 ℃的最优固化时间为68 h,60 ℃的最优固化时间为66 h.  相似文献   

5.
PBX(高聚物粘结炸药)固化后的内部结构直接影响其安全性,影响PBX结构形成的外界因素成为控制PBX安全性的主要条件。本文研究了不同固化温度下PBX的粘结强度、压缩强度和微观结构。结果表明:固化温度从60℃逐渐增加至100℃时,分子量为1 500的HTPB的粘结强度从342k Pa降为280k Pa;分子量为2 800的HTPB的粘结强度从389k Pa降为310k Pa;分子量为3 400的HTPB的粘结强度从399k Pa降为352k Pa;分子量为4 000的HTPB的粘结强度从390k Pa降为354k Pa。在此温度区间内,随着温度的增加,固化后PBX沿径向的压缩强度梯度增加,PBX粘结剂出现鼓包和裂纹及固体颗粒的裸露现象。从PBX内部性能的均匀性和安全性考虑,选取固化温度为60℃的固化工艺。  相似文献   

6.
为尽快将浇注PBX炸药转化为产品,借鉴成熟的推进剂工艺技术,对高性能浇注PBX炸药的工程化和规模化生产开展了有关研制工作。通过实现各工序、各设施生产能力的匹配,采用系列机械化、自动化的工艺设备,实现隔离或远距离操作。其中关键工艺装备包括大型混合机系统、炸药及氧化剂自动称量处理系统、铝粉处理系统、大型真空浇注系统和自动清洗系统。在生产能力扩大的同时,有效保证产品质量,保护人员安全健康,提高工艺过程的本质安全化水平。  相似文献   

7.
为满足武器弹药对目标毁伤能力和安全性的需求,以某浇注PBX 炸药为对象,对其起爆特性进行分析。介绍浇注PBX 炸药的性能特点,依据传爆药柱的选择原则,分别对临界直径和稳定爆轰进行测试,并对传爆药的匹配性进行实验验证。实验结果表明:当传爆药量和药柱直径达到一定值时,该炸药能够可靠起爆和达到稳定爆轰。  相似文献   

8.
偶联剂在HMX基浇注固化炸药中的作用   总被引:2,自引:2,他引:0       下载免费PDF全文
黄辉  王晓川 《含能材料》2000,8(1):13-17
在以奥克托今(HMX)为基的浇注固化炸药(ECX)体系中,界面存在“脱粘”现象,加入少量偶联剂可有效地改善HMX晶体的表面状态,增强晶体与粘接剂之间的界面作用,提高粘结强度。实验表明:分子中同时含有羟基和胺基的酰胺类化合物是ECX合适的偶联剂。  相似文献   

9.
为提高HMX-Al基混合炸药的能量和低易损性能,通过分析计算Al含量、奥克托今(HMX)含量对炸药爆轰性能的影响规律,确定了高固含量含铝PBX(polymer bonded explosive)炸药设计依据,在此基础上通过三级颗粒级配优化、固化体系筛选及降感剂、工艺助剂的选择应用,制备了固相含量90%(HMX/Al=75/15)的端羟基聚丁二烯(HTPB)/异佛尔酮二异氰酸酯(IPDI)黏结体系浇注固化炸药GOL?42,炸药工艺及安全性能优良.按照GJB772A等方法对GOL?42炸药进行了爆轰能量、低易损性、力学性能、热性能及加速贮存性能测试,结果表明:该炸药实测密度1.782 g·cm-3、爆速8251 m·s-1、爆压26.9 GPa,Φ25 mm圆筒试验格尼系数2.76 mm·μs-1,在快速烤燃、慢速烤燃、子弹撞击试验中响应程度均为低反应等级的燃烧反应,炸药综合性能优良,预估贮存寿命20年以上,是一种长寿命低易损浇注炸药.  相似文献   

10.
11.
为提高高聚物粘结炸药(polymer bonded explosive,PBX)炸药载体的力学强度,在炸药的粘结剂体系中引入聚氨酯弹性材料进行聚醚/聚酯粘结剂高强度载体设计。通过调控聚氨酯弹性体制备过程中多元醇的比例和分子量、固化剂的种类,利用旋转流变仪和多功能万能材料试验机开展材料固化速率性能分析和固化后聚氨酯弹性体对端羟基聚丁二烯(hydroxyl-terminated polybutadiene , HTPB)粘结剂体系力学强度影响规律分析。结果表明:PCL_PTMG 聚氨酯弹性体拉伸强度的大小与固化剂的固化速率相关;改变聚酯聚醚分子量对弹性体抗拉强度的影响不大;当聚酯聚醚的比例为4:1 时,弹性体抗拉力学强度最优;聚氨酯弹性体增大了HTPB 粘结剂体系强度。  相似文献   

12.
PBX炸药含裂纹扩展损伤的粘塑性本构关系   总被引:2,自引:1,他引:1       下载免费PDF全文
成丽蓉  施惠基 《含能材料》2015,23(10):999-1003
为描述高聚物粘结炸药(PBX)的动态力学性能,将炸药内由微裂纹扩展引起的细观损伤,耦合到宏观粘塑性本构方程中,建立了含微裂纹扩展损伤的粘塑性本构关系。针对某PBX炸药,开展了单轴压缩及断裂性能实验,研究了材料本构参数及本构关系计算算法,嵌入到ABAQUS软件中,数值模拟了该PBX炸药不同应变率条件下的力学行为。与实验结果对比表明,含裂纹扩展损伤的粘塑性本构关系能够表征PBX炸药动态条件下力学性能变化过程,可用于冲击环境下炸药损伤演化分析研究。  相似文献   

13.
为合理评估炸药的热安全性,采用自主编写的有限元软件—\"含能材料动态响应数值模拟软件\",对黑索今(RDX)基高聚物粘结炸药(PBX)药柱的烤燃过程进行了数值模拟,实现了炸药多步热分解反应的动力学过程。探索了点火区域各组份质量分数随温度的变化规律。结果表明,400 K时,初级热分解反应开始加速,450 K时次级分解反应明显发生,至460 K时,第三步热分解反应开始加速,气体终产物逐渐积累,当气体终产物质量分数为0.006%时,发生点火。此外,随着升温速率增加,炸药点火时间急剧衰减,中心点温度下降。  相似文献   

14.
不同分子量HTPB与TDI的固化反应动力学   总被引:2,自引:1,他引:1       下载免费PDF全文
测定了浇注高聚物粘结炸药(PBX)粘结剂固化反应的放热量,探讨了端羟基聚丁二烯(HTPB)分子量对固化反应速率的影响。采用非等温差示扫描量热法(DSC)研究了分子量分别为1500(M1)和2800(M2)的HTPB与2,4-甲苯二异氰酸酯(TDI)固化反应的动力学。结果表明,M1固化体系比M2固化体系的粘度增长迅速,固化放热量大。M1体系固化反应表观活化能约为55.87 kJ·mol-1,反应级数为0.88,指前因子为4.70×104 s-1; M2体系的固化峰温升高,表观活化能、反应级数和指前因子分别提高至60.77 kJ·mol-1、0.89、1.07×105 s-1,M1与M2体系反应机理函数仍遵循n级反应模型f(α)=(1-α)n,方程中的指数n有所变化。  相似文献   

15.
张远舸  田勇  周红萍  唐维 《含能材料》2018,26(7):602-607
为了评价造型粉的可压性,以便经济高效地确定压制参数,开展了造型粉加载过程中的密度演化规律研究。首先以两种TATB基的PBX-A和PBX-B造型粉为研究对象,基于获得的三种压力下的常温载荷-位移数据,转换获取各自的压力-密度曲线;然后采用粉末冶金中的Kawakita方程和Gerdemann-Jablonski方程来分别构建两种造型粉的加载曲线方程;最后对两种方程的描述精度进行评估,分析其用于描述PBX造型粉压制过程中密度演化规律的适应性。结果表明,Kawakita方程和Gerdemann-Jablonski方程都可以高精度地描述PBX-A和PBX-B造型粉加载过程中的密度演化特性,但相比之下,Gerdemann-Jablonski方程优于Kawakita方程,二者对PBX-A造型粉拟合的平均相对误差为1.23%和1.79%,对PBX-B造型粉拟合的平均相对误差为0.95%和1.57%。Gerdemann-Jablonski方程不仅描述精度比Kawakita方程更高,而且方程参数还能反映出成型过程中的造型粉流动、重排和变形等特征。  相似文献   

16.
为获得3,3-双(叠氮甲基)氧杂环丁烷-四氢呋喃共聚醚(PBT)-甲苯二异氰酸酯(TDI)黏结剂体系固化反应行为规律,采用微热量热法研究了固化温度、固化比以及增塑剂对PBT-TDI体系固化反应的影响,并对PBT-TDI体系的固化反应动力学和热力学进行了研究与分析。实验结果表明:(1)固化反应温度越高、固化剂TDI含量越多,PBT-TDI体系固化反应速度越快;(2)增加增塑剂2,2-二硝基丙醇缩甲醛与2,2-二硝基丙醇缩乙醛混合物(A3)以及癸二酸二辛酯(DOS)用量会降低PBT-TDI体系的固化反应速度;(3)PBT-TDI体系的固化反应符合n级反应动力学模型,其表观活化能Ea为12.81 kJ·mol-1,指前因子A为1.48×10-2 s-1。  相似文献   

17.
王鑫  黄振亚  刘丽平 《含能材料》2015,23(7):633-637
为实现聚叠氮缩水甘油醚(GAP)的非异氰酸酯固化,用多炔基化合物(TPTM)作GAP的固化剂,通过傅里叶红外光谱(FTIR)、力学性能和光学显微试验,研究了TPTM体系和多异氰酸酯(N100)体系的反应活性和胶片性能。用差示扫描量热法(DSC)研究了TPTM体系的固化动力学。结果表明:在60℃下,TPTM与GAP可发生1,3-偶极环加成反应形成三唑交联体系,固化反应活性明显好于N100体系。TPTM含量变化对活化能影响较小,对反应机理没有影响。得到的动力学方程能很好地预测实际应用时的固化历程。TPTM质量分数由3%增加到9.7%时,TPTM胶片拉伸强度由0.16 MPa增加到0.82 MPa,断裂伸长率由149%降到17%。TPTM的质量分数为4%时,达到N100固化体系在实际应用时(N100质量分数约10%)的力学性能,且没有气孔。  相似文献   

18.
左玉芬  熊鹰  陈捷  夏敬琼  王蔺 《含能材料》2012,20(5):587-591
用微热量热仪得到了100℃下老化20d内HMX基高聚物粘结炸药(PBX)与聚氨酯粘接胶及二者接触体系的放热量和放热速率随时间的变化曲线。用TG-DSC和FTIR分析了老化前后的样品。结果表明:HMX基PBX与聚氨酯粘接胶是相容的;受热后,HMX基PBX试样的表面结构没有变化,而聚氨酯粘接胶部分结构发生了降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号