首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ microfibrillar‐reinforced composites (MFC) based on blends from poly(ethyleneterephthalate) (PET) and low‐density polyethylene (LDPE) were prepared under industrial relevant conditions by melt extrusion, followed by continuous cold drawing in weight ratios of PET/LDPE equal to 50/50. Test specimens were prepared by pultrusion (Pult) of the drawn blend at a processing temperature below the melting temperature of PET. This was the first attempt to pultrude such a material. By varying the Pult parameters, rectangular cross‐sectional profiles have been successfully produced using a self‐designed Pult line. For comparison, plates were also prepared by compression (CM) and injection molding (IM). Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide‐angle X‐ray scattering (WAXS), and mechanical testing. SEM and WAXS showed that the highly oriented blends are converted into MFC‐structured polymer–polymer composites during the Pult, CM, and IM process. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Based on previous work, 70 vol % PA66/30 vol % PPS blend was selected as a matrix, and the PA66/PPS blend reinforced with different content of glass fiber (GF) was prepared in this study. The mechanical properties of PA66/PPS/GF composites were studied, and the tribological behaviors were tested on block‐on‐ring sliding wear tester. The results showed that 20–30 vol % GF greatly increases the mechanical properties of PA66/PPS blend. When GF content is 20 vol %, the friction coefficient of composite is the lowest (0.35), which is decreased by 47% in comparison with the unfilled blend. The wear volume of the GF‐reinforced PA66/PPS blend composite decreases with the increase of GF content. However, the wear‐resistance is not apparently improved by the addition of GF in the experimental range for comparison with unfilled PA66/PPS blend. The worn surface and the transfer film on the counterface were examined by scanning electron microscopy (SEM). The observations revealed that the friction coefficient of composite depends on the formation and development of a transfer film. The wear mechanism involves polymer matrix wear and fiber wear. The former consists of melting wear and plastic deformation of the matrix, while the latter includes fiber sliding wear, cracking, rupturing, and pulverizing. The contributions of the matrix wear and the fiber wear determine the ultimate wear volume of PA66/PPS/GF composite. In addition, the abrasive action caused by the ruptured glass fiber is also a very important factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 523–529, 2006  相似文献   

3.
Microfibrillar composites (MFC) were prepared from the blends of polypropylene (PP) and poly (ethylene terephthalate) (PET) at a fixed weight ratio of 85/15. The blending of the mixture was carried out in a single screw extruder, followed by continuous drawing at a stretch (draw) ratio 5. The stretched blends were converted into MFC by injection moulding. Scanning electron microscopy (SEM) studies showed that the extruded blends were isotropic, but both phases possessed highly oriented fibrils in the stretched blends, which were generated insitu during drawing. The PET fibrils were found to be randomly distributed in the PP matrix after injection moulding. The non isothermal crystallization behaviour of the as extruded blend, stretched blend and MFC was compared. The analysis of the crystallization temperature and time characteristics revealed that the PET fibrils in the stretched blend had a greater nucleating effect for the crystallization of PP than the spherical PET particles in the as extruded blend and short PET fibrils in the MFC.  相似文献   

4.
Composites of recycled poly(ethylene terephthalate) (PET) reinforced with short glass fiber (GF) (0, 20, 30, and 40 wt %) were compounded in a single‐screw extruder (SSE) and in a intermeshing corotating twin‐screw extruder (TSE). An SSE fitted with a barrier double‐flight screw melting section in between two single‐flight sections and a TSE with a typical screw configuration for this purpose were used. The composites were subsequently injection molded at two different mold temperatures (10 and 120°C), with all other operative molding parameters kept constant. The effects of processing conditions on composite microstructure, PET degree of crystallinity, and composite mechanical properties were evaluated. Appropriate dispersive and distributive mixing of the glass fiber throughout the PET matrix as well as fine composite mechanical and thermal‐mechanical properties were achieved regardless of whether the composites were prepared in the SSE or TSE. The performance of the SSE was attributed to the efficiency of the barrier screw melting section in composite mixing. The mold temperature influenced the mechanical properties of the composites, by controlling of the degree of crystallinity of the PET in the composites. For a good balance of mechanical and thermal‐mechanical properties, high mold temperatures are desirable, typically, 120°C for a mold cooling time of 45 s. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
Ternary fibrillar reinforced blends are obtained by melt‐blending of poly(ethylene terephthalate) (PET), polyamide 6 (PA‐6) and polyamide 66 (PA‐66) (20/60/20 by weight) in the presence of a catalyst, followed by cold drawing of the extruded bristles to a draw ratio of about 3.4 and additional annealing of the drawn blend at 220 or 240°C for 4 or 8 h. The blend samples are studied by DSC, X‐ray diffraction, SEM, and static and dynamic mechanical testing (DMA). SEM and DMA show that PA‐6 and PA‐66 form a homogeneous, continuous matrix in which PET regions are dispersed. X‐ray and DSC measurements of the drawn and annealed at 220°C samples suggest mixed crystallization (solid solubility) of PA‐6 and PA‐66, and cooperative crystallization of PET with the two polyamides. After annealing at 240°C (above the melting point of PA‐6 and below that of PET), the polyamide matrix becomes partially disoriented, while the oriented, fibrillar PET is preserved and plays the role of a reinforcing element. The DSC results for the same samples suggest in situ generation of an additional amount of copolymer. This additional copolymerization, together with that generated during blend mixing in the extruder, improves the compatibility of the blend components (mostly at the PET‐polyamide interface) and alters the chemical composition of the blend.  相似文献   

6.
Microfibrillar polymer–polymer composites (MFCs) based on low-density polyethylene (LDPE) and polyethylene terephthalate (PET) were prepared by cold drawing-isotropization technique. The weight percentage of PET was varied from 5 to 45 %. Microfibrils with uniform diameter distribution were obtained at 15 to 25 wt% of PET as evident from the scanning electron microscopy (SEM) results. Dynamic mechanical properties such as storage modulus (E′), loss modulus (E″) damping behavior (tan δ) were examined as a function of blend composition. The E′ values were found to be increasing up to 25 wt% of PET. An effort was made to model the storage modulus and damping characteristics of the MFCs using the classical equations used for short-fiber reinforced composites. The presence of PET microfibrils influenced the damping characteristics of the composite. The peak height at the β-transitions of loss modulus was lower for MFCs with 25 % PET, showing that they had superior damping characteristics. This phenomenon could be correlated with the PET microfibrils morphology. The thermal degradation characteristics of LDPE, neat blends and microfibrillar blends (MFBs) were compared. The determination of activation energy for thermal degradation was carried out using the Horowitz and Metzger method. The activation energy for thermal degradation of microfibrillar blends was found to be higher than that for the corresponding neat blends and MFCs. The long PET microfibrils present in MFBs could prevent the degradation and enhance the activation energy.  相似文献   

7.
The thermal, mechanical, and rheological properties of glass‐filled poly(propylene terephthalate) (GF PPT) were compared to glass‐filled poly(butylene terephthalate) (GF PBT). The impetus for this study was the recent commercial interest in PPT as a new glass‐reinforced thermoplastic for injection‐molding applications. This article represents the first systematic comparison of the properties of GF PPT and GF PBT in which differences in properties can be attributed solely to differences in the polyester matrices, that is, glass‐fiber size and composition, polymer melt viscosity, nucleant content and composition, polymerization catalyst composition and content, and processing conditions were kept constant. Under these controlled conditions, GF PPT showed marginally higher tensile and flexural properties and significantly lower impact strength compared to GF PBT. The crystallization behavior observed by cooling from the melt at a constant rate showed that GF PBT crystallized significantly faster than did GF PPT. Nucleation of GF PPT with either talc or sodium stearate increased the rate of crystallization, but not to the level of GF PBT. The slower crystallization rate of GF PPT was found to strongly affect thermomechanical properties of injection‐molded specimens. For example, increasing the polymer molecular weight and decreasing the mold temperature significantly increased the modulus drop associated with the glass transition. In contrast, the modulus–temperature response of GF PBT was just marginally influenced by the polymer molecular weight and was essentially independent of the mold temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 889–899, 1999  相似文献   

8.
The mechanical blending of polypropylene (PP) and low density polyethylene (LDPE) is an economical and simple method for producing new polymeric materials for specific applications. However, the reduction in strain‐at‐break of the blend is one of its main shortcomings. In this study, PP/LDPE foamed parts were fabricated by conventional injection molding (CIM) with azodicarbonamide as a chemical blowing agent (CBA) and tested for tensile properties at two test speeds. Also, the fracture surfaces of the parts were investigated by scanning electron microscopy (SEM). In addition, to investigate the underlying mechanism of the super‐ductility, the tested samples were carefully analyzed and compared, and further characterized by differential scanning calorimetry and SEM. The results suggest that fabricating PP/LDPE super‐ductile parts using CIM with a CBA is feasible. The results also indicate that there is a close relationship between the mechanical properties and morphological structures, which are deeply influenced by the dosage of CBA, the PP/LDPE ratio, and the packing parameters. Furthermore, compared to conventional injection molded solid parts, the ductility of the foamed parts can be dramatically improved by the formation of microfibrils in the PP phase, which come into being under certain processing conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44101.  相似文献   

9.
Nanofibrous morphology has been observed in ternary blends of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) when these were melt‐extruded via slit die followed by hot stretching. The morphology was dependent on the concentration of the component polymers in ternary blend LDPE/LLDPE/PP. The films were characterized by wide angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), and testing of mechanical properties. The XRD patterns reveal that the β phase of PP is obtained in the as‐stretched nanofibrillar composites, whose concentration decreases with the increase of LLDPE concentration. The presence of PP nanofibrils shows significant nucleation ability for crystallization of LDPE/LLDPE blend. The SEM observations of etched samples show an isotropic blend of LDPE and LLDPE reinforced with more or less randomly distributed and well‐defined nanofibrils of PP, which were generated in situ. The tensile modulus and strength of LDPE/LLDPE/PP blends were significantly enhanced in the machine direction than in the transverse direction with increasing LLDPE concentration. The ultimate elongation increased with increasing LLDPE concentration, and there was a critical LLDPE concentration above which it increased considerably. There was a dramatic increase in the falling dart impact strength for films obtained by blow extrusion of these blends. These impressive mechanical properties of extruded samples can be explained on the basis of the formation of PP nanofibrils with high aspect ratio (at least 10), which imparted reinforcement to the LDPE/LLDPE blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
以低密度聚乙烯(LDPE)为基体材料,聚偏氯乙烯(PVDC)为共混材料,马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)为相容剂,采用挤出和注塑成型方法制备LDPE/PVDC/LDPE-g-MAH共混物,考察了共混物的力学性能、阻隔性能、热性能和微观形态结构。结果表明:加入25%PVDC,LDPE/PVDC共混物的熔融温度下降了1.79℃,吸油率降低了9.66%,物理力学性能明显下降;加入LDPE-g-MAH后,LDPE和PVDC之间的界面黏结力增强,相容性提高,结晶温度和结晶度略有下降;与纯LDPE相比,含3%LDPE-g-MAH的LDPE/PVDC共混物的断裂伸长率提高了11.63%,缺口冲击强度提高了13.35%,吸油率下降了16.29%,柔韧性和阻隔性明显提高。  相似文献   

12.
The present investigation deals with the thermo‐mechanical recycling of post consumer milk pouches (LDPE‐LLDPE blend) and its use as jute fiber composite materials for engineering applications. The mechanical, thermal, morphological, and dynamic‐mechanical properties of recycled milk pouch‐based jute fiber composites with different fiber contents were evaluated and compared with those of the virgin LDPE‐LLDPE/jute fiber composites. Effect of artificial weathering on mechanical properties of different formulated composites was determined. The recycled polymer‐based jute fiber composites showed inferior mechanical properties as well as poor thermal stability compared to those observed for virgin polymer/jute fiber composites. However, the jute‐composites made with (50:50) recycled milk pouch‐virgin LDPE‐LLDPE blend as polymer matrix indicated significantly superior properties in comparison to the recycled milk pouch/jute composites. Overall mechanical performances of the recycled and virgin polymeric composites were correlated by scanning electron microscopy (SEM). The dynamic mechanical analysis showed that storage modulus values were lower for recycled LDPE‐LLDPE/jute composites compared to virgin LDPE‐LLDPE/jute composites throughout the entire temperature range, but an increase in the storage modulus was observed for recycled‐virgin LDPE‐LLDPE/jute composites. POLYM. COMPOS. 28:78–88, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Immiscible polymer blends are interesting multiphase host systems for fillers. Such systems exhibit, within a certain composition limits, either a separate dispersion of the two minor phases or a dispersion of encapsulated filler particles within the minor polymer phase. Both thermodynamic (e.g. interfacial tension) and kinetic (e.g. relative viscosity) considerations determine the morphology developed during the blending process. The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB), or fibers (GF), was investigated. The system studied was based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semicrystalline highly polar copolymer. Modification of the interfacial properties was obtained through using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. The compatibilizer was added in a procedure aimed to preserves the encapsulated EVOH/glass structure. Blends were prepared by melt extrusion compounding and specimens by injection molding. The morphology was characterized using scanning electron microscopy (SEM) and high resolution SEM (HRSEM), the shear viscosity by capillary rheometry and the thermal behavior using differential scanning calorimetry (DSC). The system studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfaces resulted in unique morphologies. The aminosilane glass surface treatment enhanced the encapsulation in the ternary [PP/EVOH]GB blends, resulting in an encapsulated morphology with no separtely dispersed EVOH particles. The addition of a MA‐g‐PP compatibilizer preserves the encapsulated morphology in the ternary blends with some finely dispersed EVOH particles and enhanced PP/EVOH interphase interactions. The viscosity of the binary and ternary blends was closely related to the blend's morphology and the level of shear rate. The treated glass surfaces showed increased viscosity compared to the cleaned glass surfaces in both GB and GF containing ternary blends. Both EVOH and glass serve as nucleating agents for the PP matrix, affecting its crystallization process but not its crystalline structure. The aminosilane glass surface treatment completely inhibited the EVOH crystallization process in the ternary blend. In summary, the structure of the multicomponent blends studied has a significant effect on their behavior as depicted by the rheological and thermal behavior. The structure‐performance relationships in the three‐component blends can be controlled and varied.  相似文献   

14.
Abstract

The purpose of the present study was to investigate the fibrillisation process of liquid crystalline polymers (LCPs) in an amorphous poly(phenylene ether) (PPE) matrix during melt blending and a subsequent drawing operation, as well as to analyse the relationship between morphology and mechanical properties of the fibrillar reinforced LCP/PPE blends. In order to understand the effect of the compatibility between the blend partners, an additional set of LCP/PEE blends, containing different amounts of a compatibiliser, was studied too. The processing steps included: (i) melt extrusion and continuous hot stretching for fibrillisation of the LCP component in the different LCP/PPE blends, and (ii) compression (CM) or injection moulding (IM) of the drawn blends at temperatures below the melting temperature (Tm) of the LCPs. Samples from each processing stage were characterised by means of scanning electron microscopy (SEM), wide and small angle X-ray scattering (WAXS and SAXS), and mechanical testing. SEM and WAXS showed that the as extruded blends were isotropic, but after hot stretching the LCP components became highly oriented, with a high aspect ratio and a diameter of the fibrils between 0·4 and 3 μm. The fibrillated structure of the LCPs in the blends could be preserved after the compression and injection moulding only at temperatures below Tm of the LCPs. Addition of a compatibiliser to the LCP/PPE blend did not remarkably improve the adhesion between the components, as a result of the large difference between the coefficients of thermal expansion of the blend partners, which leads to different shrinkage conditions of the LCP fibrils and the PPE matrix. The flexural modulus (E) of all IM blends increased stepwise with an increase in the weight (wt) fraction of the LCP. At the same time, the highest values for the flexural strength (σ) were obtained for the LCP/PPE blends containing 5 wt-% LCP.  相似文献   

15.
Polypropylene/low density polyethylene blend matrices have been reinforced with short glass fibers in order to study their tensile, flexural, and impact behavior. Two-roll milling and twin-screw extrusion compounding methods were used to incorporate the fiber within the polymer matrices, and standard test samples were prepared by injection molding. The effects of matrix composition and fiber concentration on mechanical properties were investigated keeping in mind the matrix and fiber morphology, the latter being intimately dependent upon the compounding method employed.  相似文献   

16.
Long fiber molding materials are expected to play an important role in the near future. This paper describes a series of experiments performed to examine properties of ternary blends containing glass fiber (GF), polyamide (PA), and polypropylene (PP). The continuous glass fiber was impregnated with one of the blend constituent polymers by our specially designed impregnation apparatus and cut into chips of 6 mm length. These chips and the other polymer were used to produce various testing specimens in a twin screw extruder or in injection molding machine. The results indicated that the effect of fiber addition on the mechanical and rheological properties is clearly dependent on the order of impregnation process. In the blends containing the GF/PA + PP, the GFs are preferentially encapsulated with PA, and therefore the mechanical properties are superior to the blends with the GF/PP + PA in which the PP phase is located surrounding the GFs. This improved wetting of fibers by sequential impregnation not only resulted in better properties but also protected the fibers from shear action of the screw, thereby allowing significant increase in average fiber length to be achieved in the injection molding process.  相似文献   

17.
In this article, an easy, effective, and eco‐friendly method to improve the mechanical performance of glass fiber‐reinforced polymer composites is proposed, which involves the coating of unsized glass fiber fabric layers by simple immersion in an aqueous suspension containing sugarcane bagasse microfibrillated cellulose (MFC), followed by vacuum‐assisted liquid resin infusion as the processing method. From atomic force microscopy, a 250 nm MFC‐rich interphase was found, revealing its ability to build micro‐ and nanobridges acting as bulk epoxy matrix and GF linker. The interlaminar shear strength, quasi‐static tensile, and flexural tests, as well as the morphological and fractographic inspection of test coupons containing the secondary substructure, broadly supported the assumption of the efficient role on the interfacial level of this nano reinforcement by enhancing the load transference and distribution from the polymer matrix to the main reinforcing fiber system compared to baseline unsized fiber‐reinforced epoxy laminates. This finding permits this class of composite materials to be considered as having great potential to achieve products with excellent performance/cost ratios. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44183.  相似文献   

18.
《国际聚合物材料杂志》2012,61(3-4):445-467
Abstract

Microfibrillar reinforced composites (MFC) based on HDPE/PET blends were prepared under conditions relevant for direct scale-up to an industrial process. The evolution of the morphology and of the linear viscoelastic response of the blend along the axis of a co-rotating twin screw extruder and at several locations along the extrusion line was monitored. Major changes in the average particle size and size distribution of the disperse phase occurred upon melting of the components, whilst a much slower evolution rate was evident downstream in the extruder. Simultaneously, G′ and G″ increased along the extruder. Pellets showing well oriented PET fibrils embedded in a HDPE matrix with poor adhesion between both were obtained. This MFC showed the typical improvement expected in mechanical performance when compared with the matrix.  相似文献   

19.
Extrusion of immiscible polymers under special conditions can lead to creation of microfibrillar‐phase morphology, ensuring significant increase of mechanical properties of polymer profiles. Polyethylene/polypropylene blend extrudates with microfibrillar‐phase morphology (polypropylene microfibrils reinforcing polyethylene matrix phase) were prepared through continuous extrusion with semihyperbolic‐converging die enabling elongation and orientation of microfibrils in flow direction. Structure of extruded profiles was examined using electron microscopy and wide‐angle X‐ray scattering. Tensile tests proved that extrudates with microfibrillar‐phase morphology show significantly higher mechanical properties than the conventional extrudates. The presented concept offers possibility of replacing the existing expensive multi‐component medical devices with fully polymeric tools. POLYM. COMPOS., 31:1427–1433, 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
This paper reports the study of microcellular injection molding of low-density polyethylene- (LDPE) based composites. The effects of adding nanoclays and polymer additives in LDPE as well as rheological property of materials on the cell morphology, mechanical properties and surface properties of microcellular injection molded LDPE based composites are presented. For the microcellular injection molding process, when 3 wt% of nanoclays are added into LDPE-based polymers, the cell morphology can be significantly improved due to the nucleating effects resulting from the broad interface areas between polymer and nanoclays. Also, the addition of low melt flow LDPE into high melt flow LDPE could achieve smaller and denser bubbles in the polymer matrix than neat high melt flow LDPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号