首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO/CuO复合催化剂的制备及其光催化性能   总被引:1,自引:0,他引:1  
通过煅烧法制备了ZnO/CuO复合光催化剂,采用紫外-可见光谱(UV-Vis)、伏安光电流、X射线衍射(XRD)、扫描电镜(SEM)以及荧光光谱(PL)等方法对其结构、表面形貌和光学特性进行了表征。结果显示,复合物为片状结构的ZnO、晶粒呈现花簇状堆积生长的CuO组成了花簇状结构,CuO的引入提高了材料的光吸收能力和光生载流子的分离效率。复合催化剂对活性艳蓝(KN-R)的光催化降解结果显示,400℃煅烧3h、铜锌摩尔比为2时,ZnO/CuO复合光催化剂的光催化氧化性能最好,在紫外光照射下降解率可达94%,在可见光照射下降解率为48.4%。  相似文献   

2.
将柠檬酸和乙二胺水热透析获得碳量子点(CQDs),以硝酸铋制备钒酸铋(BiVO_4)的前驱体,将其与CQDs混合后进行水热反应制备BiVO_4/CQDs复合催化剂。采用电沉积的方式负载于导电玻璃上制得光电极。用扫描电镜、透射电镜、X射线衍射、光电流、漫反射光谱、荧光光谱等对BiVO_4/CQDs的形貌、结构以及光学性质进行了表征,并研究其在光电催化作用下对罗丹明B(RhB)降解性能。结果表明,BiVO_4/CQDs的光电催化的性能随着外加电压增大逐渐提高;在1.2 V外加电压下,其光电催化降解RhB的动力学常数分别是单独光催化和单独电化学的3.7和3.1倍,表现出明显光电协同作用;外加电压的提高促进了光生电子空穴的有效分离,因而显著提高了光催化性能。  相似文献   

3.
以Bi(NO3)3、NH4VO3、碳纳米管(CNTs)为原料,采用水热法制备一系列不同质量比复合的BiVO4/CNTs光催化剂.利用紫外-可见漫反射(UV-vis DRS)、光致发光光谱(PL)等手段对催化剂的光学性能进行了表征.甲基橙作为光催化反应的目标化合物,研究其可见光催化活性.以对苯二甲酸作为探针分子,研究了BiVO4/CNTs复合光催化剂表面羟基自由基的生成.结果表明:BiVO4/CNTs复合材料的可见光催化活性高于纯BiVO4;不同组成的复合光材料以1%BiVO4/CNTs复合催化剂光催化效果最佳.  相似文献   

4.
以Fe3O4/SiO2复合微球为基体,采用溶胶—凝胶法制备了Bi掺杂的磁性TiO2复合光催化剂,并用SEM、FT—IR和VSM等测试手段对催化剂进行了表征。以活性艳红K-2BP为目标降解物评价其光催化活性。结果表明,制备的复合光催化剂易于磁性固液分离,K-2BP溶液初始浓度为20 mg/L,pH值为2,光催化剂的添加量为0.5 g/L,Bi摩尔分数为0.6%的光催化剂时的催化活性最高,光催化反应5 h后K-2BP的降解率达到88.38%。  相似文献   

5.
采用溶胶-凝胶法和水热合成法制备H3PMo12O40(PMo12)/TiO2复合光催化剂并应用于工业废水的降解。利用红外光谱仪(IR),X射线衍射仪(XRD),X射线光电子能谱(XPS)和扫描电子显微镜(SEM)进行测定,并在紫外光照射下分析光催化剂对DNBP废水的光催化降解性能。考察了废水的初始pH值、催化剂用量及重复利用率等对DNBP废水降解的影响。结果表明,在光照时间为5 h, pH值为5.10,用量为1.00 g/L的条件下,复合光催化剂较单纯TiO2催化剂的光催化性能有明显提高,降解率达到98.36%,COD去除率达到53.18%,且POM/TiO2复合催化剂回收利用3次仍具有较高活性。  相似文献   

6.
利用超声辅助水热法以及光还原法将Ag纳米颗粒与CuWO4/g-C3N4光催化剂复合,并使用XRD、SEM、TEM、FT-IR、XPS、DRS和PL等表征手段对催化剂的表面特性和光化学性质进行了分析。通过Ag/CuWO4/g-C3N4光催化剂在氙灯照射下降解盐酸四环素的实验,考察了Ag纳米粒子担载的二元复合材对催化剂光催化性能的影响。Ag/CuWO4/g-C3N4复合光催化剂对盐酸四环素(TTCH)的光催化降解率达到95%,降解速率是CuWO4/g-C3N4的1.39倍。Ag担载的CuWO4/g-C3N4复合材料通过Ag表面的等离子共振效应和电子聚集能力促进电子空穴分离,提升了材料的光催化活性。  相似文献   

7.
采用水热法、化学沉淀法分别制备了Bi_2WO_6、Cu_2O光催化剂,并将二者与石墨烯复合制备了Cu_2O/Bi_2WO_6/GR复合光催化剂,通过XRD进行了结构表征。以丙酸为牺牲剂,考察了n(Bi_2WO_6)∶n(Cu_2O)值、石墨烯(GR)掺杂量、丙酸用量对复合光催化剂光催化产氢性能的影响。结果表明:当复合催化剂中n(Bi_2WO_6)∶n(Cu_2O)=1∶1.3、石墨烯的掺杂量为7%、丙酸用量为4 mL时产氢性能最好。该研究结果可为利用废水中有机酸光催化制取氢气提供理论指导。  相似文献   

8.
通过两步水热法合成了一系列不同WO3掺杂含量的新型WO3/ZnIn2S4异质结复合光催化剂,并且应用X射线粉末衍射(XRD)、扫描电镜(SEM)、氮气物理吸附-脱附(BET)等表征仪器对光催化剂样品进行表征。在金卤灯光源的照射下,以20 mg/L的Cr(VI)溶液为目标污染物进行评价其光催化性能。实验结果表明,WO3/ZnIn2S4异质结复合光催化剂的光催化性能明显高于单纯的WO3和ZnIn2S4。当WO3与ZnIn2S4物质的量之比为0.20即0.20-WO3/ZnIn2S4异质结复合光催化剂表现出最高的光催化还原Cr(VI)性能。光催化性能增加的主要原因可能是由于WO3/ZnIn2S...  相似文献   

9.
采用水热的方法,通过调控pH值,制备了具有不同晶型和晶体形貌的BiVO4/GO(氧化石墨)复合可见光光催化剂,利用XRD、SEM、FT-IR和UV-Vis对样品进行表征。XRD分析显示,pH=7的条件下光催化剂呈现纯度较高的单斜白钨矿结构。以甲基橙(MO)的可见光催化降解反应为模型反应,研究了催化剂的可见光催化性能。结果表明,经GO改性的催化剂的催化能力比纯BiVO4有极大程度的提高。  相似文献   

10.
以类石墨碳化氮(g-C_3N_4)为前体,选用双(4-吡啶)胺有机配体(L)采用加热回流法成功制得Ni(Ⅱ)配合物(Ni-L),通过化学浸渍法合成Ni-L/g-C_3N_4复合光催化剂,并改变Ni-L的负载量得到不同质量配比的Ni-L/g-C_3N_4复合光催化剂.使用X射线衍射仪(XRD)、扫描电子显微镜(TEM)和荧光光谱仪表征所获得的g-C_3N_4和Ni-L/g-C_3N_4复合光催化剂.通过模拟太阳光光源照射,三乙醇胺作为牺牲剂的反应条件下分解水析出氢气的效率来评价制备的复合光催化剂的光催化活性. Ni-L负载量为5%(质量分数)的Ni-L/g-C_3N_4复合光催化剂在模拟太阳光光照6 h分解水产生氢气的量为63. 47μmol,速率为319. 4μmol·h-1·g-1,与纯相g-C_3N_4相比,极大地增加了析出氢气的量.基于XRD、TEM和荧光光谱谱图说明复合材料的表面结构不同,微观形貌也发生明显变化,同时降低了光生载流子的复合速率.结果表明,将Ni-L负载在g-C_3N_4上可大大提高g-C_3N_4的光催化活性.  相似文献   

11.
采用水热法,改变表面活性剂和溶剂制备了3种形貌的BiVO_4;对制备的BiVO_4光催化剂进行X射线衍射、扫描电子显微镜、漫反射光谱、荧光光致发光光谱等表征,以罗丹明B为目标污染物,使用氙灯模拟太阳光光源,评价了不同形貌的BiVO_4的光催化性能。结果表明,药片状BiVO_4 3 h内在全光谱和可见光下的降解率分别为100%和63%,立方体状BiVO_4在全光谱和可见光下的降解率只有30%和19%,球状BiVO_4在全光谱和可见光下的降解率为68%和29%。改变样品的形貌,增大样品的比表面积,可以显著提升光催化性能,药片状钒酸铋具有较好的光催化效果。  相似文献   

12.
采用共沉淀法制备一系列CuO-TiO_2复合氧化物催化剂,采用XRD、UV-vis、TG-DTA以及BET比表面积分析等进行表征,并测试其可见光降解甲基橙的性能.结果表明:前体是以水滑石、Cu(OH)_2、TiO_2、CuO等物相存在的混合物相,焙烧后的复合氧化物呈现CuO和TiO_2物相为主,在可见光区有较强的光响应.适宜Cu/Ti比的CuO-TiO_2复合氧化物可见光下对甲基橙具有良好的降解性能,在催化剂质量浓度为1.5g/L时,甲基橙初始质量浓度为0.4 mg/L,光照20 min降解率可达100%,光降解过程符合1级动力学.  相似文献   

13.
为了提高TiO2光催化剂日光催化性能及解决催化剂回收问题,采用微乳液法制备了La3+、Fe3+、Co2+、Ce4+共掺杂TiO2/粉煤灰微珠光催化剂,用紫外-可见分光光度计测定了光催化剂的可见光吸收性能,用能谱仪(EDS)分析了催化剂的元素含量,以甲基橙为模型污染物考察了催化剂的光催化性能。实验结果表明:掺杂复合粒子在可见光区吸光性能均高于TiO2/漂珠;且多元素掺杂有协同作用,催化剂的吸收边带红移更多,对可见光的吸收也更强。日光照射下(Co2+,Fe3+,Ce4+)三元共掺杂催化剂的活性≈(La3+,Ce4+)二元共掺杂催化剂的活性〉Fe3+、La3+单掺杂催化剂的活性。  相似文献   

14.
以简单的水热法制备了CeVO4/g-C3N4光催化剂,通过XRD、SEM、TEM、UV-Vis、FT-IR、XPS、PL等检验并分析了所制备复合催化剂样品的复合情况、纯度、形貌等,考察了掺杂0~50%CeVO4的复合光催化剂CeVO4/g-C3N4于模拟可见光下降解盐酸四环素的光催化性能.实验结果表明,以20 mg/L盐酸四环素为降解底物,负载30%CeVO4的CeVO4/g-C3N4样品在模拟可见光下3 h内对目标底物降解效率达90.5%.制备的CeVO4/g-C3N4光催化剂光催化性能优良,相同时间内对盐酸四环素的降解率是纯CeVO4的2倍,是纯g-C3N4的3.7倍.  相似文献   

15.
通过溶胶-凝胶法分别制备了Ce-Ti O2/ACF、N-Ti O2/ACF和Ce-N-Ti O2/ACF复合光催化剂,以甲醛为目标污染物,研究了单一负载Ce、N催化剂和同时负载Ce、N催化剂对甲醛降解效率的影响。试验结果表明:表面负载的光催化剂颗粒均匀,为锐钛矿型,掺杂后的复合光催化剂样品吸收光谱产生了红移;掺杂后的复合光催化剂样品降解能力强于未掺杂样品;Ce掺杂Ti O2的最佳掺杂比例n(Ce/Ti O2)为0.8%,相对于未掺杂样品催化净化低浓度甲醛效率提高了17.06%,对高浓度的甲醛降解率提高了15.28%;N掺杂Ti O2的最佳掺杂比例n(N/Ti O2)为1.5%,相对于Ti O2/ACF,对低浓度甲醛催化效率提高了1.90%,对高浓度的甲醛降解率提高了9.86%;Ce、N共掺杂Ti O2的最佳掺杂比例n(Ce)∶n(N)∶n(Ti O2)为0.8∶6∶100,相对于Ti O2/ACF,对低浓度的甲醛降解率提高了5.04%。  相似文献   

16.
采用水热法合成复合Ag3PO4/BiPO4光催化剂,考察不同pH和不同复合比例下合成的光催化剂对溶液中罗丹明B的光催化降解性能,并与BiPO4进行对比。结果表明:在pH=7,复合比例Ag3PO4/BiPO4摩尔比为4:3条件下水热制备的Ag3PO4/BiPO4对可见光的利用率最高,催化性能最好;降解180 min后,对罗丹明B的降解率达到61%,较纯相BiPO4提升了27%。本文还利用XRD、SEM和紫外可见漫反射(UV-Vis DRS)等测试手段对合成的样品进行表征,分析得出复合Ag3PO4之后,催化剂的禁带宽度变窄,并出现较多的独居石晶型BiPO4,光生电子与空穴复合效率变低,从而使复合材料的光催化降解罗丹明B的能力得到提升。  相似文献   

17.
采用水热合成法,在绢云母表面沉淀一层氧化铁薄膜,制备成氧化铁/绢云母复合光催化剂。并以次甲基蓝为降解物,重点探讨了催化剂后处理方式、体系H2O2浓度和催化剂添加量对光催化效率的影响。结果证明,复合光催化剂煅烧前比煅烧后降解效果更好;体系H2O2浓度为0.5%、光催化剂用量为5 g/L时,降解效果最佳。  相似文献   

18.
为了研究既能有效降解水中有机污染物,又能从处理过的废水中方便地回收光催化剂,利用工业偏钛酸为原料,制备了MexOy-TiO2/AC复合光催化剂(Me为Ag、Zn、La),并采用XRD、SEM等对复合光催化剂进行了表征。将MexOyTiO2/AC催化剂涂在光催化反应器壁上,以O,O-二甲基-S-(N-甲基氨基甲酰甲基)二硫代磷酸酯(dimethoate)水溶液为目标污染物,研究了复合光催化剂的光催化活性。结果表明,MexOy的掺入可使TiO2/AC复合光催化剂的光催化活性增强,其中制备的Ag2O-TiO2/AC复合光催化剂的光催化活性最高。  相似文献   

19.
通过研磨法制备一系列不同质量比的CdLa2S4/g-C3N4(CLS/CN)复合光催化剂。以罗丹明B作为目标污染物,在可见光照射下探究了催化剂的光催化降解性能。实验结果表明,CLS/CN复合材料的光催化降解效率均优于纯的CdLa2S4和g-C3N4,其中CLS/CN-2的光催化活性最好,在可见光照射35 min后对RhB降解效率达到96.6%。光催化活性的增强可能是由于形成了具有强界面相互作用的异质结结构,有利于CdLa2S4和g-C3N4之间的光诱导电荷转移,并有效促进光生电子和空穴的分离。循环实验表明所合成的复合光催化剂具有良好的光催化反应稳定性。  相似文献   

20.
以六水合硝酸铈和尿素为原料,通过改变水热时间制备了CeO2-X(X为水热时间,X=3、6、12、24 h)载体,对其进行等体积浸渍法负载活性组分Cu获得CuO/CeO2-X催化剂,将其应用于甲醇水蒸气重整制氢(MSR)反应中。通过XRD、BET、H2-TPR等表征手段,探索水热时间对CeO2-X载体、CuO/CeO2-X催化剂的结构和物化性质的影响,并考察了CuO/CeO2-X催化剂在MSR反应中的催化性能。结果表明,CuO/CeO2-6催化剂在MSR反应中展现出较好的催化活性;在反应温度为280℃、水醇物质的量比为1.2、甲醇气体体积空速(GHSV)为800 h-1的条件下,甲醇转化率可达92.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号