首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been applied to improve the efficiency of the iterative reconstruction process with apparently limited reduction in accuracy. In addition, the image recovery has been restricted to 2-D but is generalizable to three dimensions. Image artifacts related primarily to 3-D effects are reduced when compared with results from an entirely two-dimensional inversion (2-D/2-D). Important advances in terms of improving algorithmic efficiency include use of a block solver for computing the field solutions and application of the dual mesh scheme and adjoint approach for Jacobian construction. Methods which enhance the image quality such as the log-magnitude/unwrapped phase minimization were also applied. Results obtained from synthetic measurement data show that the new 3-D/2-D algorithm consistently outperforms its 2-D/2-D counterpart in terms of reducing the effective imaging slice thickness in both permittivity and conductivity images over a range of inclusion sizes and background medium contrasts.  相似文献   

2.
《现代电子技术》2017,(9):25-28
为了提高人体运动的跟踪精度,提出基于图像序列的人体运动跟踪算法。首先对当前人体跟踪算法的研究现状进行分析,指出粒子滤波算法进行人体运动跟踪的不足;然后对粒子滤波算法进行改进,增加了采样粒子多样化,提高非线性人体运动目标跟踪性能,加快人体运动跟踪速度;最后采用仿真实验对人体运动跟踪算法的性能进行测试。实验结果表明,相对于其他人体运动跟踪算法,该算法提高了人体运动跟踪的准确性,而且人体运动跟踪的时间减少,具有更好的稳定性。  相似文献   

3.
单幅高分辨率SAR图像建筑物三维模型重构   总被引:1,自引:0,他引:1  
提出了一种利用高分辨率SAR图像进行建筑物提取和三维重构的方法.首先,分析了高分辨率SAR图像建筑物产生的电磁散射的类型,给出了不同类型散射区域的后向散射计算方法,并在此基础上给出了一种利用建筑物三维CAD模型进行SAR建筑物特征区域图像仿真的方法;其次,给出了利用建筑物的二次散射结构确定建筑物底部轮廓位置和方向的方法,并提出了一种基于分布密度函数差异的仿真图像迭代匹配方法,进行建筑物高度的反演.仿真SAR图像后向散射系数用来划分建筑物不同的散射区域,通过计算特征区域之间的分布密度函数差异,以取得最大匹配度值的仿真图像对应的检验高度作为建筑物的反演高度;最后,选用了两幅不同屋顶类型的实际机载高分辨率SAR图像进行建筑物提取和三维重构实验,试验结果较为理想,验证了所提方法的可行性和有效性.  相似文献   

4.
The authors present a novel approach to the problem of tracking and reconstructing articulated objects in 3-D space. The newly conceived computational process and its supporting data structure, the hierarchical Kalman filter (HKF) and the adaptive hierarchical structure (AHS). Allow the problem to be treated in a singlet unified framework. There are three novelties in the authors' formulation: reducing the 3-D tracking problem to 2-D tracking; incorporating the kinematic and the dynamic properties of object; and tracking nonrigid objects. To demonstrate the appropriateness of the proposed method, the authors present some of the experimental results on both synthetic and real images  相似文献   

5.
3-D Kalman filter for image motion estimation   总被引:1,自引:0,他引:1  
This paper presents a new three-dimensional (3-D) Markov model for motion vector fields. The three dimensions consist of the two space dimensions plus a scale dimension. We use a compound signal model to handle motion discontinuity in this 3-D Markov random field (MRF). For motion estimation, we use an extended Kalman filter as a pel-recursive estimator. Since a single observation can be sensitive to local image characteristics, especially when the model is not accurate, we employ windowed multiple observations at each pixel to increase accuracy. These multiple observations employ different weighting values for each observation, since the uncertainty in each observation is different. Finally, we compare this 3-D model with earlier proposed one-dimensional (1-D) (coarse-to-fine scale) and two-dimensional (2D) spatial compound models, in terms of motion estimation performance on a synthetic and a real image sequence.  相似文献   

6.
An object model and estimation procedure for three-dimensional (3-D) reconstruction of objects from measurements of the spherically averaged Fourier transform magnitudes is described. The motivating application is the 3-D reconstruction of viruses based on solution X-ray scattering data. The object model includes symmetry, positivity and support constraints and has the form of a truncated orthonormal expansion and the parameters are estimated by maximum likelihood methods. Successful 3-D reconstructions based on synthetic and experimental measurements from Cowpea mosaic virus are described.  相似文献   

7.
提出了一种把矩阵分解应用于雷达目标的逆合成孔径雷达成像(ISAR)三维重构的方法。通过对目标运动场景建模,将目标的ISAR成像过程化,推导出图像序列中散射点二维位置坐标与原目标三维坐标的投影矩阵关系,利用正交投影下的矩阵分解基本方法,从观测矩阵中分解出原目标散射点的三维位置矩阵,进而实现目标的三维位置重构,仿真结果验证了该方法的有效性。  相似文献   

8.
Accurate and fast localization of a predefined target region inside the patient is an important component of many image-guided therapy procedures. This problem is commonly solved by registration of intraoperative 2-D projection images to 3-D preoperative images. If the patient is not fixed during the intervention, the 2-D image acquisition is repeated several times during the procedure, and the registration problem can be cast instead as a 3-D tracking problem. To solve the 3-D problem, we propose in this paper to apply 2-D region tracking to first recover the components of the transformation that are in-plane to the projections. The 2-D motion estimates of all projections are backprojected into 3-D space, where they are then combined into a consistent estimate of the 3-D motion. We compare this method to intensity-based 2-D to 3-D registration and a combination of 2-D motion backprojection followed by a 2-D to 3-D registration stage. Using clinical data with a fiducial marker-based gold-standard transformation, we show that our method is capable of accurately tracking vertebral targets in 3-D from 2-D motion measured in X-ray projection images. Using a standard tracking algorithm (hyperplane tracking), tracking is achieved at video frame rates but fails relatively often (32% of all frames tracked with target registration error (TRE) better than 1.2 mm, 82% of all frames tracked with TRE better than 2.4 mm). With intensity-based 2-D to 2-D image registration using normalized mutual information (NMI) and pattern intensity (PI), accuracy and robustness are substantially improved. NMI tracked 82% of all frames in our data with TRE better than 1.2 mm and 96% of all frames with TRE better than 2.4 mm. This comes at the cost of a reduced frame rate, 1.7 s average processing time per frame and projection device. Results using PI were slightly more accurate, but required on average 5.4 s time per frame. These results are still substantially faster than 2-D to 3-D registration. We conclude that motion backprojection from 2-D motion tracking is an accurate and efficient method for tracking 3-D target motion, but tracking 2-D motion accurately and robustly remains a challenge.  相似文献   

9.
Respiratory motion remains a significant source of errors in treatment planning for the thorax and upper abdomen. Recently, we proposed a method to estimate two-dimensional (2-D) object motion from a sequence of slowly rotating X-ray projection views, which we called deformation from orbiting views (DOVs). In this method, we model the motion as a time varying deformation of a static prior of the anatomy. We then optimize the parameters of the motion model by maximizing the similarity between the modeled and actual projection views. This paper extends the method to full three-dimensional (3-D) motion and cone-beam projection views. We address several practical issues for using a cone-beam computed tomography (CBCT) scanner that is integrated in a radiotherapy system, such as the effects of Compton scatter and the limited gantry rotation for one breathing cycle. We also present simulation and phantom results to illustrate the performance of this method.  相似文献   

10.
We propose and validate the hypothesis that we can use differential shape properties of the myocardial surfaces to recover dense field motion from standard three-dimensional (3-D) image sequences (MRI and CT). Quantitative measures of left ventricular regional function can be further inferred from the point correspondence maps. The noninvasive, algorithm-derived results are validated on two levels. First, the motion trajectories are compared to those of implanted imaging-opaque markers of a canine model in two imaging modalities, where subpixel accuracy is achieved. Second, the validity of using motion parameters (path length and thickness changes) for detecting myocardial injury area is tested by comparing algorithms derived results to postmortem analysis TTC staining of myocardial tissue, where the achieved Pearson product-moment correlation value is 0.968.  相似文献   

11.
为了研究距离选通水下激光成像系统输出图像帧序列的噪声特性,采用3维噪声分析方法,进行了理论分析和实验验证.为了解决实验数据集背景不均匀、样本数较少的问题,根据单帧图像生成综合噪声图像,组成模拟数据集,取得了模拟数据集和实验数据集的3维噪声分析计算的数据,并进行了比较.结果表明,描述数据集在3个方向上均随机变化的"瞬态像...  相似文献   

12.
金杰锋 《光电子.激光》2010,(11):1734-1739
针对传统心脏图像分析方法将运动分析和材料分析作为两个独立过程带来的弊端,本文基于心脏连续生物力学模型,利用有限元方法和扩展卡尔曼滤波器(EKF),将运动分析和材料分析作为一个问题来解决,取得了较好的结果。仿真实验验证了本文方法的有效性,给出了利用真实病人心脏图像实现三维运动和材料信息的同时重建的结果。  相似文献   

13.
In many medical imaging applications, due to the limited field of view of imaging devices, acquired images often include only a part of a structure. In such situations, it is impossible to guarantee that the images will contain exactly the same physical extent of the structure at different scans, which leads to difficulties in registration and in many other tasks, such as the analysis of the morphology, architecture, and kinematics of the structures. To facilitate such analysis, we developed a general method, referred to as iso-shaping, that generates structures of the same shape from segmented image sequences. The basis for this method is to automatically find a set of key points, called shape centers, in the segmented partial anatomic structure such that these points are present in all images and that they represent the same physical location in the object, and then trim the structure using these points as reference. The application area considered here is the analysis of the morphology, architecture, and kinematics of the joints of the foot from magnetic resonance images acquired at different joint positions and load conditions. The accuracy of the method is analyzed by utilizing ten data sets for iso-shaping the tibia and the fibula via four evaluative experiments. The analysis indicates that iso-shaping produces results as predicted by the theoretical framework.  相似文献   

14.
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants  相似文献   

15.
The lateral bending test is routinely used by clinicians for the preoperative assessment of spinal mobility. The evaluation of bending motion is usually based on the qualitative analysis of a two-dimensional (2-D) antero-posterior X-ray image. The aim of this paper is to introduce a novel three-dimensional (3-D) reconstruction technique that is a prerequisite for the quantitative 3-D analysis of lateral bending motion. An algorithm was developed for the 3-D reconstruction of the spine from a single X-ray image. The X-ray is calibrated using a small calibration object and an explicit calibration algorithm. The information contained in the single X-ray is completed by registering a priori 3-D geometric models of individual vertebrae. Part of the error yielded by the 3-D/2-D registration is corrected by a vertebral alignment constraint that aims to minimize intervertebral dislocations. Three-dimensional models of 15 different scoliosis patients, obtained from a standard stereo-radiographic 3-D reconstruction, were used in simulation and validation experiments. Experimental results show that the new method is robust and accurate. With pessimistic levels of simulated noise, the average root mean square reconstruction error is 2.89 mm, which is appropriate for common clinical applications.  相似文献   

16.
We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15.  相似文献   

17.
A new algorithm for three-dimensional reconstruction of two-dimensional crystals from projections is presented, and its applicability to biological macromolecules imaged using transmission electron microscopy (TEM) is investigated. Its main departures from the traditional approach is that it works in real space, rather than in Fourier space, and it is iterative. This has the advantage of making it convenient to introduce additional constraints (such as the support of the function to be reconstructed, which may be known from alternative measurements) and has the potential of more accurately modeling the TEM image formation process. Phantom experiments indicate the superiority of the new approach even without the introduction of constraints in addition to the projection data.  相似文献   

18.
In this paper, we present a complete system for the recognition and localization of a three-dimensional (3-D) model from a sequence of monocular images with known motion. The originality of this system is twofold. First, it uses a purely 3-D approach, starting from the 3-D reconstruction of the scene and ending by the 3-D matching of the model. Second, unlike most monocular systems, we do not use token tracking to match successive images. Rather, subpixel contour matching is used to recover more precisely complete 3-D contours. In contrast with the token tracking approaches, which yield a representation of the 3-D scene based on disconnected segments or points, this approach provides us with a denser and higher level representation of the scene. The reconstructed contours are fused along successive images using a simple result derived from the Kalman filter theory. The fusion process increases the localization precision and the robustness of the 3-D reconstruction. Finally, corners are extracted from the 3-D contours. They are used to generate hypotheses of the model position, using a hypothesize-and-verify algorithm that is described in detail. This algorithm yields a robust recognition and precise localization of the model in the scene. Results are presented on infrared image sequences with different resolutions, demonstrating the precision of the localization as well as the robustness and the low computational complexity of the algorithms.  相似文献   

19.
Using three-dimensional rotational X-ray angiography (3DRA), three-dimensional (3-D) information of the vasculature can be obtained prior to endovascular interventions. However, during interventions, the radiologist has to rely on fluoroscopy images to manipulate the guide wire. In order to take full advantage of the 3-D information from 3DRA data during endovascular interventions, a method is presented that yields an integrated display of the position of the guide wire and vasculature in 3-D. The method relies on an automated method that tracks the guide wire simultaneously in biplane fluoroscopy images. Based on the calibrated geometry of the C-arm, the 3-D guide-wire position is determined and visualized in the 3-D coordinate system of the vasculature. The method is evaluated in an intracranial anthropomorphic vascular phantom. The influence of the angle between projections, distortion correction of the projection images, and accuracy of geometry knowledge on the accuracy of 3-D guide-wire reconstruction from biplane images is determined. If the calibrated geometry information is used and the images are corrected for distortion, a mean distance to the reference standard of 0.42 mm and a tip distance of 0.65 mm is found, which means that accurate guide-wire reconstruction from biplane images can be performed.  相似文献   

20.
The EM algorithm for PET image reconstruction has two major drawbacks that have impeded the routine use of the EM algorithm: the long computation time due to slow convergence and a large memory required for the image, projection, and probability matrix. An attempt is made to solve these two problems by parallelizing the EM algorithm on multiprocessor systems. An efficient data and task partitioning scheme, called partition-by-box, based on the message passing model is proposed. The partition-by-box scheme and its modified version have been implemented on a message passing system, Intel iPSC/2, and a shared memory system, BBN Butterfly GP1000. The implementation results show that, for the partition-by-box scheme, a message passing system of complete binary tree interconnection with fixed connectivity of three at each node can have similar performance to that with the hypercube topology, which has a connectivity of log(2) N for N PEs. It is shown that the EM algorithm can be efficiently parallelized using the (modified) partition-by-box scheme with the message passing model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号