首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Materials Letters》2006,60(13-14):1753-1757
Flower-like rutile titania nanocrystals were prepared via a simple aqueous-phase stirring for 24 h at a low temperature of 75 °C, employing only TiCl4, HCl as the starting materials. XRD result proved the formation of rutile TiO2. The observations from TEM and SEM showed that the products were large-scale flower-shaped structures composed of radial nanorods. Comparative experiments demonstrated that pinecone-like, needlelike rutile TiO2 could be easily achieved by varying the volume ratio of TiCl4 / H2O. The growth mechanisms of TiO2 nanostructures prepared under different conditions and their photodegradation behavior were also discussed. It was found that the flower-like structures exhibited the highest photocatalytic activity in the photodegradation of aqueous brilliant red X-3B solution.  相似文献   

2.
《Advanced Powder Technology》2020,31(12):4731-4742
Titania (TiO2) nanoparticles (NPs) with different morphologies (spherical, rod-shaped, and mixed) were prepared by hydrothermal treatment of different nitric acid (HNO3)/titanium (IV) isopropoxide (TTIP) molar ratios (0.25, 0.5, 1.0, and 1.7) at different hydrothermal temperatures (90, 150, 200, and 250 °C), hydrothermal times (6, 12, and 24 h), and calcination temperatures (500, 625, and 750 °C). The crystalline structure, morphology, and surface texture of the obtained TiO2 NPs were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy analyses. Under a larger HNO3: TTIP molar ratio, higher hydrothermal temperature, and higher hydrothermal time, the spherical mixed anatase–rutile phase TiO2 NPs were converted to a nanorod (NR)-shaped rutile phase (TiO2-R). The TiO2-R NRs gave the highest methanol conversion level (65%) and hydrogen yield (45%) in the oxidative steam reforming of methanol at 400 °C.  相似文献   

3.
The present research showed dependence of crystalline phases in titania on the catalytic properties of Co/TiO2 catalysts during CO hydrogenation. A comparative study of anatase TiO2- and rultile-anatase coupled TiO2-supported Co catalysts was conducted. It was found that the presence of rutile phase (19 mol%) in titania resulted in a significant increase in the catalytic activity during CO hydrogenation. It was proposed that the role of rutile phase was to increase the stability of the support. The impact of water vapor produced during reduction on the formation of cobalt species strongly interacted with the support was probably inhibited by the presence of rutile phase in titania leading to a decrease in the reducibility loss during reduction.  相似文献   

4.
To find the percolation threshold for the electrical resistivity of metallic Ag-nanoparticle/titania composite thin films, Ag-NP/titania composite thin films, with different volumetric fractions of silver (0.26 ≤ φAg ≤ 0.68) to titania, were fabricated on a quartz glass substrate at 600 °C using the molecular precursor method. Respective precursor solutions for Ag-nanoparticles and titania were prepared from Ag salt and a titanium complex. The resistivity of the films was of the order of 10−2 to 10−5 Ω cm with film thicknesses in the range 100–260 nm. The percolation threshold was identified at a φAg value of 0.30. The lowest electrical resistivity of 10−5 Ω cm at 25 °C was recorded for the composite with the Ag fraction, φAg, of 0.55. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and transmission electron microscopic (TEM) evaluation of the effect of the morphology and the nanostructures of the Ag nanoparticles in the composite thin films on the electrical resistivity of the film revealed that the films consist of rutile, anatase, and metallic Ag nanoparticles homogeneously distributed in the titania matrix. It could be deduced that the electrical resistivity of the thin films formed at 600 °C was unaffected by the anatase/rutile content within the thin film, whereas the shape, size, and separation distance of the Ag nanoparticles strongly influenced the electrical resistivity of the Ag-nanoparticle/titania composite thin films.  相似文献   

5.
A novel processing route that exploits the application of laser energy to induce deposition of colloidal titania (TiO2) from sol–gel suspension was developed to produce titania coatings onto stainless steel (AISI316) substrate. Various laser parameters were investigated in order to establish the feasibility and to work out the key factors and optimal conditions for effectively fabricating these coatings on the substrate. The SEM, EDS, ATR-FTIR, XRD, and contact angle measurement were employed to analyse surface morphology, phase composition, crystalline structure, and the surface properties of the deposited titania coatings. Results show that the laser energy density plays a key role in controlling the deposition process and the deposited coating's properties, whilst traverse speed is also an effective factor. Higher laser energy density delivered to the specific area leads to thicker coatings and higher crystalline phases in the deposited coatings. At lowest energy density of 4.4 J mm−2 tested in this work, the deposited coating is mainly amorphous, although a small amount of anatase phase is detectable. More crystalline phases are formed including anatase, rutile, substoichiometric titanium oxides, ilmenite and hematite when the laser energy density is increased to 8.7–17.4 J mm−2. Further increases in laser energy density to 21.7 J mm−2 results in an increase in the amount of rutile phase and the disappearance of substoichiometric titanium oxide phase. The coated surfaces show an elemental composition very close to the theoretical atomic ratio of TiO2 which is significantly different from that of the as-dried coating from the same sol. Laser irradiation over a control solution, which has the same composition as the titania sol, but without the titania precursor, was also carried out and the result showed that no change on the solution composition was detected under all laser conditions, but slight oxidation of the substrate was observed at the higher laser energy density.  相似文献   

6.
Five samples of glass/ceramic composites were prepared from borosilicate glasses and both nano-aluminum oxide and nano-titanium oxide. The glass composite samples contain 10, 20, 30, 40, 50 wt.% of alumina and titania mixture. The ratio of Al2O3:TiO2 in the mixture was 1:1. The formation of cristobalite in the glass matrix of low firing glass/ceramic composite substrates limits the efficiency of the ceramic substrate when it is used in circuit boards. In the present study, addition of both alumina and titania to a borosilicate glass as a ceramic filler caused the diffusion of alumina and titania phases (anatase and rutile) constituents into the glass matrix and prevented the formation of a cristobalite. Addition of both the ceramics suppresses cristobalite formation more effectively than one of them used alone and results in lower dielectric constant and thermal expansion coefficients.  相似文献   

7.
The influence of preparation conditions on the phase composition and morphology of titania was studied for the solids synthesized by hydrothermal treatment (HT) and peptizing of hydrous TiO2 sols in acidic medium. Mutual influence of peptizing and of additive anions (SO42−, Cl) on the nature of obtained polymorphs was for the first time systematically studied and coherently explained. The solids were characterized by XRD, Raman spectroscopy, and transmission electron microscopy. It was found that peptizing step preceding HT and the presence of anions play a crucial role for the selective formation of TiO2 anatase or rutile polymorphs. Low temperature peptizing leads to acicular rutile particles, whereas HT produces highly dispersed anatase. However if the HT was preceded by peptizing step, rutile was obtained in most cases. The influence of additives strongly depends on the moment of their introduction. Sulfate and chloride species can act as phase growth controllers, or as morphology modifiers. Sulfate hindered formation of rutile and favored anatase al low temperatures, but for already formed rutile seed, sulfate acted only as a shape controller. By contrast, chloride showed a strong tendency to promote rutile growth, whatever the conditions. A qualitative model was proposed explaining the effects observed, supported by ground state DFT and semi-empirical calculations of the aqueous Ti species.  相似文献   

8.
Well-ordered nanotube arrays of titania ~ 0.7 μm high and about 40 or 110 nm in diameter were prepared via electrochemical oxidation at constant voltage (10, 15, 20 or 25 V) in a mixture of 0.86 wt.% of NH4F, glycerol and deionized water. The effect of annealing the nanotubes at 600 °C on their morphology and structure was examined using SEM and TEM techniques. These substrates are suitable supports for a calcium phosphate coating deposited by a simple immersion in Hank solution.The nucleation and growth of a calcium phosphate (Ca–P) coating deposited on TiO2 nanotubes (NT) from Hanks' solution was investigated using SEM. XPS and FTIR surface analytical techniques were used to characterize the self-organized porous TiO2 layers covered with calcium phosphate coatings before and after protein adsorption. Our results confirm that the nanotubular titania layer became stable after annealing at 600 °C, while its internal structure changed from amorphous to crystalline anatase, and eventually, a mixture of anatase and rutile. These thermally stabilized TiO2 nanotubes significantly enhance apatite formation in Hanks' Balanced Salt Solution as compared to pure Ti covered with a native oxide layer. The Ca–P/TiO2 NT/Ti surface adsorbs a higher amount of protein (bovine serum albumin, BSA) for a geometric surface area than does the Ti surface. The above difference in protein adsorption suggests a more promising initial cellular response for a Ca–P/TiO2 NT/Ti composite than for a typical Ti implant surface.  相似文献   

9.
The SnO2 cubes with the rutile structure have been successfully synthesized without using any catalyst. Their morphology and microstructure were studied by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and elected area electron diffraction (SAED). It is revealed that the SnO2 nanocubes exhibit high crystalline quality. The size of the nanocubes ranges from 100 nm to 300 nm. The side surfaces of nanocubes are {110} planes, while their cube axes are [001] direction. The growth mechanism of SnO2 nanocubes was discussed and we suggested vapor-solid process should dominate the growth. These SnO2 nanostructures represent an important example of spontaneous organization.  相似文献   

10.
TEM characterization of iron-oxide-coated ceramic membranes   总被引:1,自引:0,他引:1  
Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe2O3) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe2O3 coating on the sintered, coated membranes, where the Fe2O3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe2O3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe2O3, while the AZTC membrane was a mixture of the anatase and rutile phase of TiO2 as well as ZrO2 and corundum, Al2O3. The average pore size of the underlying AZTC membrane increased after the Fe2O3-coated membrane was sintered. The nanoporosity in the sintered Fe2O3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe2O3.  相似文献   

11.
Various α-MnO2 nanostructures have been successfully synthesized by a simple hydrothermal method based on the redox reactions between the MnO4 and H2O in mixture containing KMnO4 and HNO3. The effect of varying the hydrothermal time to synthesize MnO2 nanostructures and the forming mechanism of α-MnO2 nanorods were investigated by using XRD, SEM and TEM. The results revealed an evolvement of morphologies ranging from brushy spherical morphology to nanorods depending upon the hydrothermal time. The surface area of the synthesized nanomaterials varied from 89 to 119 m2/g. Electrochemical properties of the products were evaluated using cyclic voltammetry and galvanostatic charge–discharge studies, and the sample obtained by hydrothermal reaction for 6 h at 120 °C showed maximum capacitance with a value of 152 F/g. In addition, long cycle life and excellent stability of the material were also demonstrated.  相似文献   

12.
TiO2 nanostructures with different morphologies (spherical, tube, leaf-like and flower-like particles) were synthesized via a facile hydrothermal process. Polycaprolactone (PCL)/10 vol.% TiO2 nanocomposites were prepared by solvent casting methods. In vitro bioactivity of the nanocomposite films was examined by immersion in the simulated body fluid (SBF) for up to 28 days. It was found that the morphology of titania nanostructures significantly influence the in vitro bioactivity of PCL/TiO2 nanocomposites. This observation was attributed to the amount of anatase phase and the specific surface area of the TiO2 nanostructures, which provide high surface exposure to SBF.  相似文献   

13.
In the present study, we performed hydrothermal method as a simple and efficient route for the synthesis of rutile TiO2 nanostructures in various concentrations of lithium hydroxide solutions. TiO2 nanopowders with average sizes of 15 and 23 nm were prepared using 4 M and 7 M LiOH solutions. X-ray diffraction analysis (XRD), transmission electron microscope (FEG-STEM), scanning electron microscopy (SEM), and Brunauer–Emmet–Teller (BET) analyses were used in order to characterize the obtained products and comparison of the morphology of the powders obtained in different concentrations of LiOH solvent. It was shown that alkali solution concentration has affected the crystallinity, agglomeration ratio, particle size and specific surface area of the obtained rutile phases.  相似文献   

14.
In this paper we report on the synthesis of alumina, titania and mixed alumina–titania in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulphonyl) amide [Py1,4]TFSA via sol-gel methods using aluminium isopropoxide and titanium isopropoxide as precursors. Our results show that the as-synthesized alumina is mainly mesoporous boehmite with an average pore diameter of 3.8 nm. The obtained boehmite is subject to a phase transformation into γ-Al2O3 and δ-Al2O3 after calcinations at 800 and 1,000 °C, respectively. The as-synthesized TiO2 shows amorphous behaviour and calcination at 400 °C yields anatase which undergoes a further transformation to rutile at 800 °C. The as-prepared alumina–titania powders are amorphous and transformed to rutile and α-Al2O3 after calcination at 1,000 °C TiO2. The obtained alumina–titania has a higher surface area than those of alumina or titania. The surface area of the as-synthesized alumina–titania was found to exceed 486 m2 g−1, whereas the surface areas of the as-synthesized boehmite and titania were around 100 m2 g−1, respectively.  相似文献   

15.
An interesting observation is reported on the dramatic effect of HNO3 on crystalline phase evolution in the 33.3 mol% Li2O–SiO2 glass–ceramic (stoichiometric composition of lithium disilicate Li2Si2O5, LS2) prepared by sol–gel processes from tetraethylorthosilicate (TEOS) and lithium ethoxide precursors. Nitric acid (65%), in molar ratio HNO3/TEOS = 0.1, was added either to the precursor sol or to 95 °C dried gel. The product, which is amorphous at temperatures below 450 °C, transforms into crystalline lithium metasilicate (Li2SiO3, LS) at around 550 °C (starting temperature ∼450 °C), instead of forming crystalline LS2. Phase separation in the glassy phase may be responsible for the formation of lithium metasilicate. XRD, 29Si MAS, and 7Li static NMR were used to follow the crystallization evolution and network structures of the materials heat-treated at various temperatures.  相似文献   

16.
LaPO4:Eu3+ powders with different morphologies were hydrothermally constructed by adjusting the amount of HNO3 without using a catalyst, surfactant, or template. The as-prepared products were characterized by photoluminescence spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), infrared (IR) spectra, and X-ray photoelectron spectroscopy. The SEM study revealed that the amount of HNO3 played a crucial role in the morphology of the final products. The XRD results indicated that the as-prepared samples were in the monoclinic phase when 3 mL of HNO3 was used. The HR-TEM micrographs and SAED results demonstrated that the prepared nanorods were single and crystalline in nature with HNO3, and that they grew preferentially along the [0 1 2] direction. The emission spectra showed that the LaPO4:Eu3+ samples had the strongest emission intensity when prepared with HNO3.  相似文献   

17.
We report the synthesis of ruthenium dioxide (RuO2) nanostructures by thermal evaporation of RuO2 powder. RuO2 nanostructures of different shapes were synthesized at various concentration, flow rate, and pressure of oxygen. At a constant pressure of 3 torr of flowing oxygen, polygonal prism-like RuO2 nanorods with flat tips were grown at an O2 flow rate of 100 sccm; club-shaped nanorods with obelisk tip were formed at 300 and 600 sccm, and hollow rods with square tip were formed at 1800 sccm. A mixture of O2 and Ar at a total flow rate of 600 sccm led to the formation of short club-shaped nanorods indicating the suppression effect of Ar on the growth of nanorods. The pressure also had a significant effect on the formation of RuO2 nanostructures, at a fixed flow rate of 600 sccm of O2, a pressure of 3 torr resulted in the growth of club-shaped RuO2 nanorods, while high pressures of 380 and 760 torr resulted in the formation of both linear club-shaped and pine tree-like hierarchical RuO2 nanorods. X-ray diffraction and transmission electron microscopy analysis indicated the formation of tetragonal phase of RuO2 with high crystallinity. A density functional calculation on RuO2, RuO3, and RuO4 was performed to help to explain the experimental results.  相似文献   

18.
The study of the luminescent properties of the rare-earth (RE) elements hosted in different crystalline matrixes is strongly motivated due to technological applications in optoelectronic devices and flat panel displays. In particular, it is known that nanostuctured titania (TiO2) is a promising host material for several trivalent rare earth ions. In this paper Tb- and Yb-doped titania nanofibers have been fabricated by electrospinning technique. A full characterization, is presented, including microstructural, thermal, spectroscopic and optical investigations. All electrospun materials consisted of randomly oriented nanofibers of fairly uniform diameter of 35 and 80 nm for, respectively, Tb-doped and Yb-doped TiO2. The incorporation of RE elements within the titania lattice resulted in a delayed anatase to rutile phase transition, accompanied by the formation Ln2Ti2O7 (Ln = Tb, Yb). All samples showed luminescent properties, the relative emission spectra were dominated by the typical Tb3+ and Yb3+ emission peaks associated to the specific Ln3+ 4f-transitions.  相似文献   

19.
SnO2 nanowires and nanobelts have been grown by the thermal evaporation of Sn powders. The growth of nanowires and nanobelts has been investigated at different temperatures (750–1000°C). The field emission scanning electron microscopic and transmission electron microscopic studies revealed the growth of nanowires and nano-belts at different growth temperatures. The growth mechanisms of the formation of the nanostructures have also been discussed. X-ray diffraction patterns showed that the nanowires and nanobelts are highly crystalline with tetragonal rutile phase. UV-visible absorption spectrum showed the bulk bandgap value (∼ 3–6 eV) of SnO2. Photoluminescence spectra demonstrated a Stokes-shifted emission in the wavelength range 558–588 nm. The Raman and Fourier transform infrared spectra revealed the formation of stoichiometric SnO2 at different growth temperatures.  相似文献   

20.
Nitrogen-doped TiO2 nanotubes were synthesized by annealing of the anodized titania nanotubes with ammonia at the temperature of 500 °C. The ordered structure of titania nanotubes maintained after the nitrogen doping process, as is evidenced by SEM observations. Detailed structural analysis revealed that the phase transformation temperature of titania nanotube from anatase to rutile is decreased after nitrogen doping. The XRD patterns of nitrogen-doped titania exhibit an increased peak intensity and a decreased FWHM in the (110) peak of rutile in comparison with those of undoped titania under the same annealing conditions, indicating that nitrogen doping may have facilitated the phase transition at the annealing temperature of 500 °C, which is in consistence with the analysis of Raman spectra as the comparison of A1g and Eg Raman peaks of rutile in the nitrogen-doped and undoped titania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号