共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates the effects of melt treatment and addition of alloying elements on the impact toughness of as-cast and heat-treated Al–10.8% Si near-eutectic alloys. Increasingly precise impact behaviors are discussed in the context of differentiating between initiation and propagation energies, including the ductility index, which is the ratio of the propagation to initiation energies; total energy as a useful measure is also discussed. Details concerning the evaluation of tensile properties are reported in a separate article [Mohamed AMA, Samuel FH, Samuel AM, Doty HW. Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. Mater Des, in press]. The concentration of elements in the alloys was changed to the following range: Fe 0.5–1 wt%, Mn 0.5–1 wt%, Cu 2.25–3.25 wt%, and Mg 0.3–0.5 wt%, while the impact toughness upon artificial aging in a temperature range of 155–240 °C for 5 h was also investigated. The results indicate that the morphology of fibrous Si in Sr-modified alloys enhances toughness because of its profound effect on crack initiation and crack propagation resistance. The combined addition of modifier and grain refiner leads to a 33% increase in the impact strength compared to the untreated alloy. In alloys containing high levels of iron, such as the RF2 (1% Fe, 1% Mn) and RF4 (1% Fe, 0.5% Mn) alloys, the addition of iron leads to an increased precipitation of sludge or β-Fe platelets, respectively; these particles also act as crack initiation sites and reduce the impact properties noticeably. In alloys already containing high levels of copper, such as the RC2 (3.25% Cu, 0.3% Mg) and RC5(0.3.25% Cu, 0.5% Mg) alloys, increasing the copper level lowers the impact properties significantly, in view of the fact that the fracture behavior is now predominantly influenced by the Al2Cu phase rather than by the Si particles. The average crack propagation speed of impact-tested samples shows a good inverse relationship to impact energy. Crack propagation speed can thus provide a qualitative estimation of the impact energy expected for special alloy conditions. 相似文献
2.
A.K. Lohar B. Mondal D. Rafaja V. Klemm S.C. Panigrahi 《Materials Characterization》2009,60(11):1387-1394
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting. 相似文献
3.
The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al–20Si–5Fe–2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 × 105 K/s and 5 × 107 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 °C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al–20Si–5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (~ 1 μm), eutectic Al–Si phase with eutectic spacing of ~ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5–7 at.% silicon and nanometric Si precipitates (20–40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al–20Si–5Fe alloy was noticed, particularly in the Ni-containing alloy. 相似文献
4.
Z. Ma A.M. Samuel F.H. Samuel H.W. Doty S. Valtierra 《Materials Science and Engineering: A》2008,490(1-2):36-51
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained. 相似文献
5.
Z. Ma E. Samuel A.M.A. Mohamed A.M. Samuel F.H. Samuel H.W. Doty 《Materials & Design》2010,31(2):902-912
This study investigated the effects of cooling rate during solidification, heat treatment, and the addition of Mn and Sr on the formation of intermetallic phases in Al–11Si–2.5Cu–Mg alloys. Microstructures were monitored using optical microscopy and EPMA techniques. The results reveal that the volume fractions of intermetallic phases are generally much lower in the furnace-cooled samples than in the air-cooled ones due to the dissolution of the β-AlFeSi and Al2Cu phases during slow cooling at critical dissolution temperatures. Strontium additions increased the volume fraction of the Al2Cu phase in the as-cast conditions at low and high cooling rates, as well as at varying ranges of Mn levels. Platelets of the β-AlFeSi phase were to be observed in the microstructure of the as-cast air-cooled samples with a DAS of 40 μm at both Mn levels, while none of these particles were to be found in the furnace-cooled samples with a DAS of 120 μm. Sludge particles were observed in almost all of the air-cooled alloys with sludge factors of between 1.4 and 1.9. These particles, however, were not observed in the furnace-cooled alloys with similar sludge factors. Solution heat treatment coarsens the Si particles in the non-modified alloys under both sets of cooling conditions studied. In the Sr-modified alloys, solution treatment has varied effects depending on the cooling rate and the level of Mn present. 相似文献
6.
Diana A. Lados Diran Apelian Paul C. Paris J. Keith Donald 《International Journal of Fatigue》2005,27(10-12):1463
Crack growth behavior of small and long cracks has been a subject of much research; the differences observed in the growth response were largely attributed to crack closure. In this study, cast Al–Si–Mg alloys of various residual stress levels and Si content/morphology were investigated, and the dominant closure mechanisms were identified. The near-threshold fatigue crack growth behavior of the alloys is controlled by two types of closure: residual stress-induced (due to residual stresses introduced during heat treatment) and microstructure/roughness-induced (due to variations in Si content/morphology). These closure mechanisms were individually discussed and closure corrective techniques were applied to long crack growth results. The near-threshold closure corrected long crack growth data compare favorably with small crack growth data. 相似文献
7.
The mechanical properties of a precipitation hardenable Al–Mg–Si alloy subjected to cryorolling and ageing treatments are reported in this present work. The severe strain induced during cryorolling of Al–Mg–Si alloys in the solid solutionised state produces ultrafine microstructures with improved mechanical properties such as strength and hardness. The improved strength and hardness of cryorolled alloys are due to the grain size effect and higher dislocation density. The ageing treatment of cryorolled Al–Mg–Si alloys has improved its strength and ductility significantly due to the precipitation hardening and grain coarsening mechanisms, respectively. The reduction in dimple size of cryorolled Al–Mg–Si alloy upon failure confirms the grain refinement and strain hardening mechanism operating in the severely deformed samples. 相似文献
8.
9.
Liu Yong Zhu Jingchuan Wang Yang Zhan Jiajun 《Materials Science and Engineering: A》2008,490(1-2):113-116
Hot compressive behaviors of Ti–6Al–2Zr–1Mo–1V alloy at 1073 K, as well as the evolution of microstructure during deformation process, were investigated in this paper. The results shows that flow stress increases up to a peak stress, then decease with increasing strain, and forms a stable stage at last. The grain size also shows an decrease at first and increase after a minimum value. Dislocations are observed to produce at the interface of α/β phase, and the phase interface and dislocation circle play an important role in impeding the movement of dislocation. As strain increase, micro-deformation bands with high-density dislocation are founded, and dynamic recrystallization occurs. 相似文献
10.
The tensile deformation behavior of Ti–3Al–4.5V–5Mo titanium alloy was studied. The results show that there are obvious yield points on true stress–true strain curves of annealing structures, then a stress drop occurs. The curves show linear work-softening after yielding at annealing temperature of 720–780 °C and linear work-hardening at annealing temperature of 800–840 °C. Elastic energy stored in the α-phase is dramatically released after plastic deformation of the β-phase, which leads to the stress drop. 相似文献
11.
The fatigue behaviour of titanium alloy Ti–6.5Al–3.5Mo–1.5Zr–0.3Si (TC11) was examined at 520°C to study the effects of microstructural variation on the dwell sensitivity. Three microstructures (equiaxed, tri-modal and basketweave) were used in this study. When a 3-min dwell time was imposed at the peak of each cycle a significant fatigue life reduction was observed for all microstructures tested. Among the three microstructures, equiaxed microstructure showed the strongest fatigue life reduction. The basketweave microstructure had a little higher dwell-time fatigue life than tri-modal microstructure at low maximum stress levels. In all cases, extensive quasi-cleavage facets and planar slips with track-like dislocations have been intimately linked with the dwell sensitive fatigue response. The amount of quasi-cleavage facets and planar slips decreased with a decrease of the α phase content. A rationalization for planar slip was proposed based on the mechanism of dislocations shearing α2 particles. It is believed that α2 particle formation and oxidization effects played an important role in dislocation planar slip. 相似文献
12.
The paper describes a complex procedure applied in the quantitative analysis of a dendritic microstructure of an Al–Si alloy together with a statistical analysis of the results obtained. Result distributions are compared between individual specimens, and it is found that certain result populaces show significant differentiation in terms of the distribution of results, even when obtained from different parts of the same cast specimen. 相似文献
13.
A. Richter C.-L. Chen R. Smith E. McGee R.C. Thomson S.D. Kenny 《Materials Science and Engineering: A》2008,494(1-2):367
The mechanical properties of individually pure and intermetallic phases of typical Al–Ni–Si piston alloys are investigated at different temperatures using hot stage nanoindentation. The hardness and the indentation modulus of a number of phases are determined at room temperature, 500 K and 650 K. Both, hardness and reduced modulus drop with increasing temperature in different ratios for the various phases. Increasing Ni content in the grains improves the mechanical stability of the material at elevated temperatures in general. The indentation patterns are studied using atomic force microscopy with particular reference to the indentation depths and pile-up effects. Site-specific samples from the material surrounding the nanoindents are prepared using a focussed ion beam field emission gun for examination in the transmission electron microscope. This allows direct observation of material changes as a result of the indentation process in the different phases within the alloy system.Corresponding linked atomistic finite element calculations have been carried out for Si and Ni–Al systems as a function of increasing Ni content at various temperatures. The results show only a small difference in the mechanical behaviour of Si between 300 K and 650 K as observed in the experiments. Large differences for Al at both temperatures studied result in an increase of plasticity with rising temperature and atomic motion that changes from slip in well-defined planes to a viscous fluid-like behaviour. The formation of dislocations and slip bands during indentation for the Ni–Al systems is studied. 相似文献
14.
The objective of this work was to conduct a detailed assessment of the microstructure and mechanical properties of an emerging Al–Zn–Mg–Cu powder metallurgy (P/M) alloy known as Alumix 431D. A variety of techniques were considered including optical microscopy, X-ray diffraction, electron-probe micro-analysis, thermal dilatometry, and differential scanning calorimetry as well as apparent hardness, tensile testing, and bending fatigue. Alumix 431D exhibited many of the same attributes found in wrought counter parts such as 7075. A sintered density of approximately 99% of theoretical was achieved, indicating that the alloy was highly responsive to sintering. Once heat treated, a T6 hardness of 86 HRB and a room temperature ultimate tensile strength of 448 MPa were noted. Thermal analyses implied that the precipitation behaviour of Alumix 431D closely mimicked comparable 7XXX series wrought alloys and was largely premised on the precipitation of η-phase variants. Tensile properties of the alloy in a T1 temper were found to be relatively stable at temperatures up to 150 °C and 1000 h of exposure time. Those of T6 specimens degraded under the same exposure conditions to the point where equivalency with the T1 product was noted. 相似文献
15.
Feng Wang Baiqing Xiong Yongan Zhang Baohong Zhu Hongwei Liu Xiaoqing He 《Materials Science and Engineering: A》2008,486(1-2):648-652
In this study, effect of various aging tempers (T6, T73 and RRA treatment) on the microstructure and mechanical properties of the spray-deposited Al–10.8Zn–2.8Mg–1.9Cu alloy was studied using high-resolution electron microscopy, selected area diffraction, and tensile tests. The results indicate that the two types of GP zones, GPI and GPII, are major precipitates for the alloy under T6 condition. No clear precipitation free zone was observed, and the grain boundary precipitates were continuous. Under two-step aging condition, the GP zones and η′ are major precipitates for the alloy, the discontinuous grain boundary precipitates are favorable to SCC resistance in over-aged condition, which reduces its strength 58 MPa (about 7%) compared to the peak-aged condition. After retrogression and re-aging treatment, the grain boundary precipitates are discontinuous, which is closed to that resulting from T73 temper. RRA treatment decreased ultimate tensile strength 25 MPa (about 3%) in values compared with the alloy at T6 condition. 相似文献
16.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range). 相似文献
17.
Liu Yanbin Liu Zhiyi Li Yuntao Xia Qinkun Zhou Jie 《Materials Science and Engineering: A》2008,492(1-2):333-336
The effect of artificial aging treatment on fatigue crack propagation (FCP) resistance of an Al–Cu–Mg alloy was investigated. It was shown that FCP rate of artificially aged alloy in the Paris region is lower than that of naturally aged alloy before and after thermal exposure. During the thermal exposure, tensile strength of artificially aged alloy remained unchanged. The results of three-dimensional atom probe (3DAP), transmission electron microscope (TEM) and differential scanning calorimeter (DSC) analysis showed that Cu–Mg co-cluster in artificially aged alloy are larger than that in natural aged alloy and can stably exist during thermal exposure. Size of Cu–Mg co-cluster was found to be the main factor influencing the thermal stability of Cu–Mg co-cluster and the FCP resistance. 相似文献
18.
Al–20Si–5Fe–2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 °C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110–150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al–20Si–5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures. 相似文献
19.
Superior Cryogenic Tensile Strength and Ductility of In Situ Al–Cu Matrix Composite Reinforced with 0.3 wt% Nano‐Sized TiCp 下载免费PDF全文
Run Geng Wei‐Si Tian Qing‐Long Zhao Feng Qiu Qi‐Chuan Jiang 《Advanced Engineering Materials》2018,20(7)
20.
Damage microstructures generated beneath the Vickers indentation applied to the silicon particles in an Al–18.5 wt.%Si alloys were studied. Plastic deformation at low loads and volume expansion due to subsurface crack formation at high loads (>650 mN) were responsible for pile-up formations around the indentations. The probability of lateral cracks reaching the surface and causing particle fracture was shown to obey Weibull statistics with a low modulus. The indentation pressure estimated as 19.3 GPa induced the transformation of diamond cubic Si-I to bcc Si-III and rhombohedral Si-XII, as observed by Raman microspectroscopy. Cross-sectional FIB and TEM revealed a semi-circular plastic core and subsurface lateral crack pattern below the residual indents and a localized amorphous zone at the median crack boundary immediately below the plastic core. 相似文献