首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 μm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.  相似文献   

2.
In the current work, the effects of chopped strand mat (CSM) glass fibre 450 g/m2 on tribo-properties of unsaturated polyester are evaluated. Experimental tests were performed by using Block on Ring (BOR) machine against polished stainless steel under dry contact condition. Three principle orientations of CSM glass fibre in the matrix were considered, i.e. namely Parallel (P-O), Anti-Parallel (AP-O) and Normal (N-O). Specific wear rate, friction coefficient and interface temperature were determined and presented as a function of applied load (30–100 N), and sliding distance (0–14 km) at two different sliding velocities (2.8 and 3.9 m/s). Scanning electron microscopy (SEM) was used to observe the damages features on the worn surfaces. The results showed that the orientations of CSM glass fibre significantly influenced the tribological performance of polyester composite. Better tribo performance were achieved when the polyester was reinforced with CSM glass fibre and tested at Parallel orientation. Moreover, specific wear rate and friction coefficient of polyester was reduced by 75%, and 55% at P-O of CGRP composite. The damage features were predominated by debonding of fibers, matrix deformation and polyester debris transfer.  相似文献   

3.
This work presents a systematic approach to evaluate and study the effect of process parameters on tensile, flexural and impact strength of untreated short sisal fibre-reinforced vinyl ester polymer-based composites and predicts the optimum properties of random natural fibre-reinforced composites. The natural fibre of sisal at lengths of 10, 30 and 50 mm and vinyl ester resin at loadings of 15, 30 and 45 (wt%) were prepared. The composite panel was then fabricated using hand lay method in cold process of size 180×160 mm2. Samples were then cut from the panel and subjected to mechanical properties testing such as tensile, flexural and impact strengths. The average tensile strength ranges between 27·1 and 43·9 MPa. The flexural strength ranged between 26·9 and 49·5 MPa and the impact strength ranged between 16 and 93 J/m. The strength values were optimized using factorial design and genetic algorithm (GA) method. The predicted optimum process parameter values are in good agreement with the experimental results.  相似文献   

4.
In this study the wear volume map is obtained and considered for evaluation of the abrasive wear performance for polyamide (PA6) and PA6 composites. Polyamide composites were tailored using 25 wt.% glass bead, 20 wt.% talc and 30 wt.% wollastonite fillers. In this work, the influence of filler materials, abrasion surface roughness and applied loading values on abrasive wear performance of PA6 and PA6 composites were evaluated. Experimental abrasive wear tests were carried out at atmospheric condition using pin-on-disc rig arrangement. Tests were performed under 4, 6, 8 and 10 N load values, traveling speed of 1 m/s and abrasion surface roughness values of 5, 20 and 45 μm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PA is reached using glass bead filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing mechanism and delimitation of filler tips.  相似文献   

5.
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1·5 M lead (II) methanesulfonate and 0·9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min???1. During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g???1 at a load current-density of 20 mA cm???2 with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.  相似文献   

6.
Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in T g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of T g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1·58 × 10???6 Scm???1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6·828 × 10???4 Scm???1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0·2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters (ω) and (τ) of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.  相似文献   

7.
The performance of an electrical double layer capacitor (EDLC) composed of high surface area activated carbon electrodes and a new ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIm]TCB, as the electrolyte has been investigated by impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge studies. The high ionic conductivity (~1·3 × 10???2 S cm???1 at 20 °C) and low viscosity (~22 cP) of the ionic liquid, [EMIm]TCB, make it attractive as electrolyte for its use in EDLCs. The optimum capacitance value of 195·5 F g???1 of activated carbon has been achieved with stable cyclic performance.  相似文献   

8.
采用石墨(Gr)、聚四氟乙烯(PTFE)和玻璃纤维(GF)改性聚酰胺6(PA6),以提高PA6的摩擦磨损性能和力学性能。重点研究了填料组合、配比、载荷和转速对复合材料摩擦磨损性能的影响,通过磨损表面形貌分析探讨了摩擦磨损机理。结果表明:Gr/PTFE/GF混杂改性PA6能明显降低摩擦系数并提高耐磨性,PA6/Gr/PTFE/GF质量比为70/5/10/15时摩擦系数和磨损率最低,且在高转速(40N,1500r/min)下摩擦磨损性能更好,摩擦系数为0.08,比PA6降低了27%,磨损率为5.5×10~(-6) mm~3/(N·m),比PA6降低了1个数量级,且该复合材料的拉伸强度、冲击强度、储能模量和损耗模量都高于PA6。  相似文献   

9.
氧离子注入增强尼龙1010的耐磨性   总被引:6,自引:0,他引:6  
用能量 4 5 0keV ,剂量 1× 10 15/cm2 和 5× 10 15/cm2 及能量 10 0keV ,剂量 3×10 16 /cm2 的氧离子分别对尼龙 10 10进行O+注入改性。以HastC合金球为上球样 ,分别与注入及未注入尼龙 10 10下盘样组成摩擦副 ,在销盘摩擦试验机上评价它们在干摩擦及水润滑条件下的摩擦磨损行为。用扫描电镜 (SEM )观察注入及未注入样品磨损前后表面形貌。研究结果发现 :几种工艺的O+注入均增强了尼龙 10 10的耐磨性 ,提高注入能量比增加注入剂量对增强尼龙 10 10的耐磨性更有效。随着注入样品磨损量的减少 ,与其配摩合金球的磨损量增大。未注入样品的磨损主要表现为粘着、犁沟及塑性变形 ,注入样品的磨损主要为疲劳及三体磨粒磨损。  相似文献   

10.
In a recent work, it has been shown that it is possible to achieve a better combination of compressive strength, flexural strength and toughness properties in calcium phosphate (CaP) composites containing 20 and 30 wt% mullite (3Al2O3·2SiO2). In view of their potential application as load bearing implants, the present work reports the friction and wear properties of the newly developed composites against zirconia under dry ambient as well as in simulated body fluid (SBF) containing bovine serum albumin (BSA) protein. For comparison, experiments were also conducted on monolithic hydroxyapatite (HAp, Ca10(PO4)6(OH)2) and mullite under identical conditions. Under the investigated fretting conditions, the mullite-containing composites exhibited higher coefficient of friction (COF) of 0.4–0.6, compared to pure HAp (COF ~ 0.25–0.3). Although the wear resistance of the composites containing 20 or 30 wt% mullite was better in dry conditions, higher wear rate was measured in SBF conditions. The difference in tribological properties has been analyzed in reference to the difference in phase assemblage and mechanical properties. A comparison with some competing biomaterials reveals good potential of the investigated CaP-mullite composites for application as wear resistant implants.  相似文献   

11.
Pure and fluorine-modified tin oxide (SnO2) thin films (250–300 nm) were uniformly deposited on corning glass substrate using sol–gel technique to fabricate SnO2-based resistive sensors for ethanol detection. The characteristic properties of the multicoatings have been investigated, including their electrical conductivity and optical transparency in visible IR range. Pure SnO2 films exhibited a visible transmission of 90% compared with F-doped films (80% for low doping and 60% for high doping). F-doped SnO2 films exhibited lower resistivity (0· 12 × 10???4 Ω  cm) compared with the pure (14·16 × 10???4 Ω  cm) one. X-ray diffraction and scanning electron microscopy techniques were used to analyse the structure and surface morphology of the prepared films. Resistance change was studied at different temperatures (523–623 K) with metallic contacts of silver in air and in presence of different ethanol vapour concentrations. Comparative gas-sensing results revealed that the prepared F-doped SnO2 sensor exhibited the lowest response and recovery times of 10 and 13 s, respectively whereas that of pure SnO2 gas sensor, 32 and 65 s, respectively. The maximum sensitivities of both gas sensors were obtained at 623 K.  相似文献   

12.
Mechanical characteristics of fibre-reinforced composites are decisively influenced by the fibre/matrix interactions. This work is focused on the comparison of the single fibre pull-out test and the short beam shear test to assess the main advantages of both methods in terms of resource requirements and reliability. Lyocell fibres are used raw and enzymatic modified in thermoplastic (PLA and PP, both methods) as well as thermoset (PTP and Biresin, only short beam shear test) matrices. The IFSS values of the pull-out test are all in the range from 10.93 ± 3.63 to 14.87 ± 5.22 N/mm2. The results of the short beam shear test provide significant differences in apparent ILSS for the analysed fibre/matrix combinations. The results of the single fibre pull-out test show no significant differences in IFSS and have a higher variance, but enable a better estimation of the potential of the examined fibre–matrix combination.  相似文献   

13.
This work studies the possibility of compounding natural fibres (flax) into engineering plastics (PA6 and PB6) and comparing the results with counterpart glass fibre composites. The problem in compounding is the difficulty to compound the fibres with such polymers of high melting temperatures without decomposing the natural fibre thermally. Preliminary experiments are tried to define the possible processing window using the kneader namely temperature, compounding time and shear rate. Fibre content is tried in range of 0–50 wt.% with 10% step. The mixing temperature covers the range around the melting temperature ‘Tm’ [Tm−20, Tm+20]°C. The use of pre-melting temperature in compounding would utilise the energy evolving by fibres mutual rubbing. Compounding time is optimised at the minimum level. Shearing rate is tried at 25, 50, 75 and 100 rpm. Optimum conditions are defined to be 210–230 °C and 200–210 °C for PBT and PA6 respectively. Shearing rate is also defined to lie within 25–50 rpm.Two different additives of non-organic mineral and organic phosphate flame retardants are tried with the prepared composites either alone or in combination with each other. The loading of flame retardants is limited to 20 wt.% in order to leave a space for natural fibres as well as the polymer and to keep in turn the overall composite mechanical properties. A mix of 1:1 ratio between the both types of retardants is needed to reach V0 flame retardation level. Mechanical properties are even improved 30% in E-modulus and 4% in strength with respect to composites without flame retardants. However, the injection moulding is reported to be difficult because of the high viscosity and the parameters should be optimised regarding the desired flame retardance level and the required mechanical properties as well as keeping the fibres not damaged.  相似文献   

14.
In this paper, we studied and explored the tribological performance of pure vinylester (V), glass fiber reinforced (GFR), SiC filled glass fiber reinforced vinylester composite under dry and water lubricated sliding conditions. Friction and wear tests were carried out with configuration of a pin on a rotating disc under ambient conditions. Tests were conducted at normal load 10, 30 and 50 N and under sliding speed of 1.6 m/s, 2.8 m/s and 4 m/s. The results showed that the coefficient of friction decreases with the increase in applied normal load values both under dry and water lubricated conditions. On the other hand for pure vinylester specific wear rate increases with increase in applied normal load under dry sliding condition and decreases with increase in applied normal load under water lubricated conditions. However the specific wear rate for GFR vinylester composite and SiC filled GFR vinylester composite decreases with the increase in applied normal load both under dry and water lubricated conditions. Moreover, for the range of load and speeds used in this investigation the coefficient of friction and specific wear rates using water lubricant registered lower values than that of the dry condition. The specific wear rates for pure vinylester and vinylester + 50 wt.% GFR and SiC filled GFR vinylester composite under dry and water lubricated sliding condition were in the order of 10−7 mm3 N−1 mm−1.  相似文献   

15.
Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted solid-state method. The structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 materials were investigated. XRD analysis indicated the as-synthesized LiNi1/3Co1/3Mn1/3O2 was with the layered α-NaFeO2 structure. The discharge capacity was about 154 m·Ahg???1 at 0·1 °C rate in the range of 2·0–4·5 V. The kinetics of the LiNi1/3Co1/3Mn1/3O2 materials was investigated by the galvanostatic intermittent titration technique (GITT) method. The lithium ion diffusion coefficient of the LiNi1/3Co1/3Mn1/3O2 was determined in the range of 10???8??? 10???9 cm2· s???1 as a function of voltage of 3·7?4·5 V.  相似文献   

16.
Nanocrystalline NdBa2ZrO5 ·5 has been successfully synthesized through a single step auto-ignition combustion route for the first time. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the combustion product is phase pure and has an ordered cubic perovskite structure. The phase transitions and thermal stability of the nanopowder were investigated by differential thermal and thermogravimetric analyses. Transmission electron microscopy results indicated that the particle sizes are 20–30 nm. Selected area electron diffraction pattern has shown that as-prepared powder is polycrystalline in nature. The optical absorption spectra analysis confirmed that the material falls to the semiconducting range with a bandgap of ~3 ·69 eV and therefore, could be used as transparent wide bandgap semiconductor. The relative density of the sintered sample is ~96% at 1510 °C for 2 h. The surface morphology of the sintered pellet has been studied by scanning electron microscopy and the average grain size observed is ~0·7  $\upmu$ m. Dielectric constant (ε r) of NdBa2ZrO5·5 at 5 MHz is 29·6 and loss factor (tan δ) is 4 ×10???2 at room temperature.  相似文献   

17.
The crystallization and subsequent melting behaviour of absorbed water in the model composites of polyamide 6 (PA6) and carbon fibre were investigated by differential scanning calorimetry (DSC) in comparison with those in neat PA6, using the small rectangular specimens exposed to water at 90 °C. In the DSC curves of PA6 any exothermic peaks of crystallization and endothermic ones of melting were not observed, but a step corresponding to glass transition was observed at about −30 °C during the heating process. Thus water absorbed by neat PA6 was recognized as non-freezing bound water which does not crystallize, probably due to the strong interaction with the polyamide chains. On the other hand, for the model composite several exothermic peaks were clearly observed at temperatures ranging from −10 to −20 °C, and their intensity was increased with increasing the fibre content. The distinct endothermic peaks were detected around at 0 °C during the reversed heating process. The glass transition temperature was not affected by adding the carbon fibre. Comparing with the result of neat PA6 indicates that in the model composite water exists in a state near free water, besides the non-freezing bound water dispersed in the matrix polyamide. It is further implied that water is mainly accumulated in the matrix/fibre interfacial region with some microstructural heterogeneties or defects, in which the water molecules can easily move under much weaker interaction with the polyamide chains.  相似文献   

18.
Small-scale slab tests at ambient and elevated temperatures, conducted on horizontally unrestrained simply supported slabs, are presented in this paper. The aim of this research is to investigate the structural behaviour of concrete produced from different percentages of glass sand (20, 40, and 60 % by weight) and reinforced with different volume fractions of basalt fibre (0, 0.1, 0.3, and 0.5 % by total mix volume), when subjected to large vertical displacement. The results were also compared against similar structural members with concrete that did not contain glass or fibres. The results showed that the fracture of the reinforcement was the mode of failure for all the slabs and the load carrying capacity was enhanced above the theoretical yield-line load. For the slabs tested at elevated temperatures, the enhancement due to membrane action was at least twice as high as that recorded in the ambient temperature tests. The slabs with higher glass sand and basalt fibre content also exhibited greater enhancement and failed at higher displacement. The results also showed that the enhancement in the concrete with glass aggregate and basalt fibre was greater than that in concrete that contained no glass or fibre by up to 26 and 31 % at ambient temperature and in fire respectively.  相似文献   

19.
Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1·95Al0·05O4 cathode for lithium ion batteries. Results show that LiMn1·95Al0·05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive in cathode. It shows that the conductivity of cathode reaches its maximum value when the content of conductive additives is 15 wt%. This is in agreement with the results of charge and discharge experiments. The application of polyaniline can evidently enhance the electrochemical performance of cathode. The discharge capacity of cathode using 15 wt% polyaniline is 95·9 mAh g???1 at the current density of 170 mA g???1. The charge transfer resistance under different depths of discharge of cathode is much lower compared with the use of acetylene black. It can be concluded that the application of polyaniline in cathode can greatly improve the electrochemical performances of LiMn1·95Al0·05O4 cathode.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号