首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hundred steers and heifers from a large feedyard (65,000-head capacity) were used to determine the prevalence levels of enterohemorrhagic Escherichia coli O157 (EHEC O157) and Salmonella spp. prior to and after shipping to a commercial packing facility. Two samples, a ventral midline hide swab and a fecal sample, were aseptically collected from each animal 2 weeks prior to the date of transportation and at the packing plant immediately after exsanguination. Samples were collected from all trailers (n = 46) before animals were loaded for transport to the packing facility. The average prevalence levels of EHEC O157 on hides (18%) and in feces (9.5%) at the feedyard decreased (P > 0.05) at the packing plant to 4.5 and 5.5%, respectively. The average prevalence levels of Salmonella spp. on hides (6%) and in feces (18%) at the feedyard increased to 89 and 46%, respectively, upon arrival at the packing plant. Average prevalence levels for EHEC O157 and Salmonella spp. on the trailers were 5.43 and 59%, respectively. The results of this study demonstrate that transportation may be a potential stressor for cattle, as evidenced by the increased shedding of Salmonella spp.  相似文献   

2.
Transportation from the feedlot and lairage at the processing plant have been identified as potential sources of Escherichia coli O157:H7 and Salmonella hide contamination. The objective of this study was to perform a comprehensive tracking analysis of E. coli O157:H7 and Salmonella associated with beef cattle from the feedlot through processing. Cattle (n = 581) were sampled in a feedlot, then transported in multiple lots to three commercial, fed beef processing plants in the United States, where they were sampled again. Samples were collected from the tractor trailers prior to loading cattle and from the lairage environment spaces prior to entry of the study cattle. Pathogen prevalence on cattle hides increased on every lot of cattle between exiting the feedlot and beginning processing. Prior to loading cattle, E. coli O157:H7 was found in 9 (64%) of 14 tractor trailers. E. coli O157:H7 was detected in over 60% of the samples from each lairage environment area, while Salmonella was detected in over 70% of the samples from each lairage environment area. E. coli O157:H7 and Salmonella isolates (n = 3,645) were analyzed using pulsed-field gel electrophoresis. The results of the pulsed-field gel electrophoresis tracking indicate that the transfer of bacteria onto cattle hides that occurs in the lairage environments of U.S beef processing plants accounts for a larger proportion of the hide and carcass contamination than does the initial bacterial population found on the cattle exiting the feedlot. Finally, the results of this study indicate that hide wash cabinets are effective in removing contamination derived from the lairage environment.  相似文献   

3.
Lymphatic tissue, specifically lymph nodes, is commonly incorporated into ground beef products as a component of lean trimmings. Salmonella and other pathogenic bacteria have been identified in bovine lymph nodes, which may impact compliance with the Salmonella performance standards for ground beef established by the U.S. Department of Agriculture. Although Salmonella prevalence has been examined among lymph nodes between animals, no data are currently available regarding feedyard origin of the cattle and Salmonella prevalence. Bovine lymph nodes (279 superficial cervical plus 28 iliofemoral = 307) were collected from beef carcasses at a commercial beef harvest and processing plant over a 3-month period and examined for the prevalence of Salmonella. Cattle processed were from seven feedyards (A through G). Salmonella prevalence was exceptionally low (0% of samples were positive ) in cattle from feedyard A and high (88.2%) in cattle from feedyard B. Prevalence in the remaining feedyards ranged widely: 40.0% in feedyard C, 4.0% in feedyard D, 24.0% in feedyard E, 42.9% in feedyard F, and 40.0% in feedyard G. These data indicate the range of differences in Salmonella prevalence among feedyards. Such information may be useful for developing interventions to reduce or eliminate Salmonella from bovine lymph nodes, which would assist in the reduction of Salmonella in ground beef.  相似文献   

4.
Salmonella prevalence and counts were estimated for samples from the oral cavity, hide, rumen, and feces of 100 cattle at slaughter and from the pre- and postchill carcasses of these cattle. Samples were collected from 25 consecutively slaughtered cattle from each of four unrelated groups slaughtered at a single abattoir on different days. Ten additional fecal samples from each group were collected from their respective abattoir holding pens prior to slaughter. The prevalence of Salmonella was estimated using automated immunomagnetic separation, and the counts were estimated using a combination of most probable number (MPN) and automated immunomagnetic separation. A total of 606 samples were collected with Salmonella isolated from 157 (26%), including 29% of oral cavities, 68% of hides, 16% of feces collected after evisceration, 25% of rumen samples, 2% of prechill carcasses, 3% of postchill carcasses, and 48% of feces collected from holding pens. The prevalence and count of Salmonella varied between the different groups of animals tested. The highest count obtained was from a rumen sample (1.1 x 10(4) MPN/g). Other counts were generally low, with a maximum count in feces collected after evisceration and in the abattoir holding pens of 93 and 23 MPN/g, respectively. The highest count on hides, in oral cavities, and on carcasses was 4.8 MPN/cm2, 23 MPN/g, and 0.31 MPN/cm2, respectively. Even though Salmonella was present on the hides and in the rumen and feces of at least one animal from each group of cattle, the processing of animals at this abattoir resulted in few contaminated carcasses, and when contamination occurred, Salmonella was detected at low numbers.  相似文献   

5.
The objective of this study was to evaluate the effect of typical production practices during the transport of cattle on the resulting incidence of Salmonella and Campylobacter in the feces, on the hides, and on the carcasses of these cattle and in the environment (trucks, holding pens, and knock boxes). Various factors were evaluated, including the type of animal (feedlot cattle vs. adult pasture cattle), the breed of cattle, the body condition of the animal, the age of the animal, the time of feed and water withdrawal, the contamination level of the transport vehicle at the feedlot or farm, the transport time, the time cattle were held in the holding pen at the plant, and the contamination level of the holding pen. Four groups of each type of animal were sampled on different days. Samples were collected from cattle prior to transport and after transport (rectal and hide swabs) as well as from the carcasses of these cattle. Pre- and posttransit samples were also taken from the transport vehicle and from the holding pen and knock box at the slaughter facility. For feedlot cattle, fecal shedding stayed fairly constant for both organisms before and after transport (3 to 5% for Salmonella and 64 to 68% for Campylobacter). However, the shedding rate for adult cattle increased from 1 to 21% for Salmonella but stayed constant for Campylobacter (6 to 7%). Contamination of hides with Salmonella increased for both animal types from a level of 18 to 20% to a level 50 to 56%. For Campylobacter, the contamination level decreased from 25 to 13% for feedlot cattle but remained unchanged for adult animals (1 to 2%). Nineteen percent of feedlot cattle carcasses and 54% of adult cattle carcasses tested positive for Salmonella, while only2% of feedlot cattle carcasses and none of the adult cattle carcasses tested positive for Campylobacter. Thus, for feedlot cattle, the factors considered in this study did not affect the shedding of either organism but did affect the contamination of hides with both. For adult animals, the factors increased both shedding of and hide contamination with Salmonella only, not Campylobacter.  相似文献   

6.
This study was conducted to identify the origin of Escherichia coli O157:H7 contamination on steer hides at the time of harvest. Samples were collected from the feedlot, transport trailers, and packing plant holding pens and from the colons and hides of feedlot steers. A total of 50 hide samples were positive for E. coli O157:H7 in two geographical locations: the Midwest (25 positive hides) and Southwest (25 positive hides). Hide samples were screened, and the presence of E. coli O157: H7 was confirmed. E. coli O157:H7 isolates were fingerprinted by pulsed-field gel electrophoresis and subjected to multiplex PCR procedures for amplification of E. coli O157:H7 genes stx1, stx2, eaeA, fliC, rfbEO157, and hlyA. Feedlot water trough, pen floor, feed bunk, loading chute, truck trailer side wall and floor, packing plant holding pen floor and side rail, and packing plant cattle drinking water samples were positive for E. coli O157:H7. Pulsed-field gel electrophoresis banding patterns were analyzed after classifying isolates according to the marker genes present and according to packing plant. In this study, hide samples positive for E. coli O157:H7 were traced to other E. coli O157:H7-positive hide, colon, feedlot pen floor fecal, packing plant holding pen drinking water, and transport trailer side wall samples. Links were found between packing plant side rails, feedlot loading chutes, and feedlot pens and between truck trailer, different feedlots, and colons of multiple cattle. This study is the first in which genotypic matches have been made between E. coli O157:H7 isolates obtained from transport trailer side walls and those from cattle hide samples within the packing plant.  相似文献   

7.
The objective of this study was to establish the necessary protocols and assess the efficacy of cetylpyridinium chloride (CPC) as an antimicrobial intervention on beef cattle hides. Experiments using CPC were conducted to determine (i) the methods of neutralization needed to obtain valid efficacy measurements, (ii) the effect of concentration and dwell time after treatment, (iii) the effect of CPC on hide and carcass microbial populations when cattle were treated at a feedlot and then transported to a processing facility for harvest, and (iv) the effectiveness of spray pressure and two-spray combinations of CPC and water to reduce hide microbial populations. Residual CPC in hide sponge samples prevented bacterial growth. Dey-Engley neutralization media at 7.8% and a centrifugation step were necessary to overcome this problem. All dwell times, ranging from 30 s to 4 h, after 1% CPC application to cattle hides resulted in aerobic plate counts and Enterobacteriaceae counts 1.5 log CFU/100 cm2 lower than controls. The most effective dose of CPC was 1%, which reduced aerobic plate counts and Enterobacteriaceae counts 2 and 1 log CFU/100 cm2, respectively. Low-pressure application of 1% CPC at the feedlot, transport to the processing facility, and harvest within 5 h of application resulted in no effect on Escherichia coli O157 prevalence on hides or preevisceration carcasses. Two high-pressure CPC washes lowered aerobic plate counts and Enterobacteriaceae counts by 4 log CFU/100 cm2, and two medium-pressure CPC washes were only slightly less effective. These results indicate that under the proper conditions, CPC may still be effective for reducing microbial populations on cattle hides. Further study is warranted to determine if this effect will result in reduction of hide-to-carcass contamination during processing.  相似文献   

8.
To determine patterns of cross-contamination and antibiotic susceptibility of microorganisms commonly associated with cattle, 60 cattle shipped to a commercial abattoir (20 in each of three separate trial periods) were followed through processing. Samples for bacterial isolation were collected from the feces and hides immediately before shipping, from the hides at the abattoir after exsanguination, and from the carcasses before evisceration and in the cooler. Samples were cultured for Salmonella and non-type-specific Escherichia coli. Salmonella was identified in 33.9% (n = 20) of the fecal samples and on 37.3% (n = 22) of the hides before shipment. At the abattoir, the proportion of hides from which Salmonella was isolated increased (P < 0.001) to 84.2% (48 hides). Nonspecific E. coli and Salmonella were recovered from 40.4 and 8.3% of preevisceration carcass samples, respectively. No Salmonella or nonspecific E. coli were recovered from hotbox carcass samples. Isolates were tested for antimicrobial drug susceptibility. For nonspecific E. coli, 80.3% (n = 270) of the isolates were resistant to at least one antimicrobial drug. For Salmonella, 97% (n = 101) of the isolates were resistant to at least one antimicrobial drug; however, only 4.0% were resistant to two or more. The most common resistance was to sulfamethoxazole. These results indicate that the presence of microorganisms resistant to antimicrobial drugs is common in cattle and beef. Further studies are needed to identify the sources and causes of this drug resistance.  相似文献   

9.
Escherichia coli O157:H7 and Salmonella on cattle hides at slaughter are the main source of beef carcass contamination by these foodborne pathogens during processing. Hypobromous acid (HOBr) has been approved for various applications in meat processing, but the efficacy of HOBr as a hide antimicrobial has not been determined. In this study, the antimicrobial properties of HOBr were determined by spraying cattle hides at either of two concentrations, 220 or 500 ppm. Treatment of hides with 220 ppm of HOBr reduced the prevalence of E. coli O157:H7 on hides from 25.3 to 10.1% (P < 0.05) and reduced the prevalence of Salmonella from 28.3 to 7.1% (P < 0.05). Treatment of hides with 500 ppm of HOBr reduced (P < 0.05) the prevalence of E. coli O157:H7 on hides from 21.2 to 10.1% and the prevalence of Salmonella from 33.3 to 8.1%. The application of 220 ppm of HOBr reduced (P < 0.05) aerobic plate counts, total coliform counts, and E. coli counts on hides by 2.2 log CFU/ 100 cm(2). The use of 500 ppm of HOBr resulted in reductions (P < 0.05) of aerobic plate counts, total coliform counts, and E. coli counts by 3.3, 3.7, and 3.8 log CFU/100 cm(2), respectively, demonstrating that the use of higher concentrations of HOBr on hides resulted in additional antimicrobial activity. These results indicate that the adoption of a HOBr hide wash will reduce hide concentrations of spoilage bacteria and pathogen prevalence, resulting in a lower risk of carcass contamination.  相似文献   

10.
Ascophyllum nodosum (Tasco-14) decreased the prevalence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in animals fed prior to harvest. Tasco-14 was supplemented on a 2% dry matter basis 14 days prior to harvest to determine its effects on EHEC and Salmonella spp. prevalence. Two hundred mixed crossbred steers and heifers (Bos indicus x Bos taurus), in a large commercial finishing facility, served as experimental units. Treatment (TRT, n = 100) animals received a steam-rolled corn-based diet containing 2% Tasco-14 on a dry matter basis, and control (CON, n = 100) animals received only the steam-rolled corn-based diet. Hide swabs and fecal samples were obtained for EHEC and Salmonella spp. evaluations. Animals were sampled 1 day prior to (d - 1) the feeding of Tasco-14 and immediately following exsanguinations. The prevalence of EHEC O157 on hide swabs and in fecal samples (P = 0.0001 and P < 0.0001, respectively) and the prevalence of EHEC O157:H7 on hide swabs and in fecal samples (P < 0.0001 and P < 0.0001, respectively) was reduced by 33 and 36% from d - 1 levels on TRT hide swabs and by 9 and 11% in TRT fecal samples. The prevalence of EHEC O157 and EHEC O157:H7 was reduced by 33 and 36% from d - 1 levels on TRT hide swabs and by 9 and 11% in TRT fecal samples. The prevalence of Salmonella spp. on hide swabs did not change for TRT animals (P = 0.64). CON animals showed an increase in Salmonella spp. prevalence (P < 0.0001) from d - 1 feeding levels on hide swabs. The prevalence of Salmonella spp. increased in both TRT and CON fecal samples when compared to d - 1 levels (P = 0.002). However, TRT samples exhibited a lower (P < 0.05) postfeeding prevalence of Salmonella spp. in fecal samples than did CON samples. Results from this study indicate that 2% Tasco-14 supplementation in feedlot cattle diets reduces EHEC O157 and EHEC O157:H7 prevalence on hide swabs and in fecal samples and may suppress increases in Salmonella spp.  相似文献   

11.
To determine the distribution of pathogens on cattle hides at the feedlot, samples were collected from six hide surface locations (back, flank, hock, neck, perineum, and ventrum), the oral cavity, the rectal-anal junction, and the feces of feedlot cattle and subjected to Escherichia coli 0157 detection via culture methods and to Salmonella detection via PCR. E. coli 0157 was isolated from one or more of the sampling locations from 31 (42.5%) of the 73 animals sampled. Location-specific prevalence of E. coli 0157 was 5% for back samples, 5% for flank samples, 12% for hock samples, 7% for neck samples, 12% for perineum samples, 8% for ventrum samples, 1% for oral cavity samples, 4% for rectal-anal junction swabs, and 23% for fecal grab samples. Salmonella was isolated from one or more of these sample locations from 100% (50 of 50 samples) of all animals sampled. Location-specific prevalence of Salmonella was 76% for back samples, 74% for flank samples, 94% for hock samples, 76% for neck samples, 88% for perineum samples, 86% for ventrum samples, 94% for oral cavity samples, 64% for rectal-anal junction swabs, and 50% for fecal grab samples. The sampling locations that maximized the likelihood of finding E. coli 0157 and Salmonella (84 and 96%, respectively) if the animal was positive at one sampling location or more were the hock, perineum, and fecal grab. These data suggest that the use of multiple sample locations is useful when isolating these pathogens from feedlot cattle. Focusing on one sampling location may underestimate the prevalence.  相似文献   

12.
In this study, the effectiveness of direct-fed microbials at reducing Escherichia coli O157 and Salmonella in beef cattle was evaluated. Steers (n=240) received one of the following four treatment concentrations: control = lactose carrier only; low = 1 X 10(7) CFU per steer daily Lactobacillus acidophilus NP51; medium = 5 x 10(8) CFU per steer daily L. acidophilus NP51; and high = 1 x 10(9) CFU per steer daily L. acidophilus NP51. Low, medium, and high diets also included 1 x 10(9) CFU per steer Propionibacterium freudenreichii NP24. Feces were collected from each animal at allocation of treatment and found to have no variation (P = 0.54) between cohorts concerning E. coli O157 recovery. Feces and hide swabs were collected at harvest and analyzed for the presence of E. coli O157 by immunomagnetic separation and Salmonella by PCR. No significant dosing effects were detected for E. coli O157 recovery from feces at the medium dose or from hides at the medium and high doses. E. coli O157 was 74% (P < 0.01) and 69% (P < 0.01) less likely to be recovered in feces from animals receiving the high and low diets, respectively, compared with controls. Compared with controls, E. coli O157 was 74% (P = 0.05) less likely to be isolated on hides of cattle receiving the low dose. No significant dosing effects were detected for Salmonella recovery from feces at the medium and low doses or from hides at any doses. Compared with controls, Salmonella was 48% (P = 0.09) less likely to be shed in feces of cattle receiving the high dose. No obvious dose-response of L. acidophilus NP51 on recovery of E. coli O157 or Salmonella was detected in our study.  相似文献   

13.
The objective of this study was to determine the source(s) of Salmonella contamination in ground beef. One hundred dairy cows were harvested in a U.S. commercial beef processing plant. Samples of hides, carcasses after hide removal and before exposure to antimicrobial intervention, carcasses after all antimicrobial interventions, superficial cervical lymph nodes from the chuck, trim, ground beef, and air were obtained. Ninety-six percent of the hide samples, 47% of the carcasses before intervention, 18% of the lymph nodes, 7.14% of the trim, and 1.67% of the ground beef samples were positive for Salmonella. None of the samples obtained from the carcasses after the full complement of interventions and none of the air samples were positive for Salmonella. All Salmonella-positive samples were subjected to pulsed-field gel electrophoresis, and eight DNA Xba I restriction patterns were identified. The majority of isolates had one of two restriction digest patterns. The strain isolated from ground beef had the same pattern as the strains isolated from hides and from carcasses immediately after hide removal. The Salmonella isolates from trim samples and lymph nodes also had the same restriction digest pattern. These results indicate that hide and lymph nodes are the most likely sources of Salmonella in ground beef. Dressing practices that effectively reduce or eliminate the transfer of bacteria from hide to carcass and elimination of lymph nodes as a component of raw ground beef should be considered as measures to reduce Salmonella contamination of ground beef. Because total elimination of lymph nodes from ground beef is not possible, other approaches should be explored. Easily accessible lymph nodes could be screened for Salmonella very early in the slaughter process. When the results are positive for Salmonella, the corresponding carcasses should be fabricated separately at the end of the production run, and the trim from these carcasses should be subjected to a treatment that destroys Salmonella.  相似文献   

14.
For two large beef processing plants, one located in the southern United States (plant A) and one located in the northern United States (plant B), prevalence of Escherichia coli O157:H7, Listeria spp., Listeria monocytogenes, and Salmonella was determined for hide, carcass, and facility environmental samples over the course of 5 months. The prevalence of E. coli O157:H7 (68.1 versus 55.9%) and Salmonella (91.8 versus 50.3%) was higher (P < 0.05), and the prevalence of Listeria spp. (37.7 versus 75.5%) and L. monocytogenes (0.8 versus 18.7%) was lower (P < 0.05) for the hides of cattle slaughtered at plant A versus plant B. Similarly, the prevalence of Salmonella (52.0 versus 25.3%) was higher (P < 0.05) and the prevalence of Listeria spp. (12.0 versus 40.0%) and L. monocytogenes (1.3 versus 14.7%) was lower (P < 0.05) for the fence panels of the holding pens of plant A versus plant B. The prevalence of E. coli O157:H7 (3.1 versus 10.9%), Listeria spp. (4.5 versus 14.6%), and L. monocytogenes (0.0 versus 1.1%) was lower (P < 0.05) for preevisceration carcasses sampled at plant A versus plant B. Salmonella (both plants), Listeria spp. (plant B), and L. monocytogenes (plant B) were detected on fabrication floor conveyor belts (product contact surfaces) late during the production day. For plant B, 21 of 148 (14.2%) late-operational fabrication floor conveyor belt samples were L. monocytogenes positive. For plant B, E. coli O157:H7 and L. monocytogenes were detected in preoperational fabrication floor conveyor belt samples. Overall results suggest that there are regional differences in the prevalence of pathogens on the hides of cattle presented for harvest at commercial beef processing plants. While hide data may reflect the regional prevalence, the carcass data is indicative of differences in harvest practices and procedures in these plants.  相似文献   

15.
The aim of the study was to establish whether the visual cleanliness of cattle slaughtered was correlated to hide and carcass contamination as indicated by aerobic colony count (ACC), Enterobacteriaceae count (EC) and Escherichia coli count (ECC). Cattle in a slaughterhouse were visually inspected and assigned to a category from 1 (very clean) to 5 (very dirty) based on cleanliness. Fifteen animals for each category were randomly selected, hide and carcass sampled and analyzed for ACC, EC and ECC. Results showed that increasing dirt on cattle was associated with higher ACC, EC and ECC on hide and carcasses. Carcass ACC and ECC belonging to animals classified in cleanliness categories 3, 4 or 5 have a higher probability of exceeding the limits set by the Reg. EU 2073/2005. The study supports the conclusion that the pre-slaughter visual evaluation of animal cleanliness and application of corrective actions can be an effective aid to reduce carcass contamination.  相似文献   

16.
The effectiveness of current antimicrobial interventions used in reducing the prevalence or load of Escherichia coli O157 and indicator organisms on cattle hides and carcasses at two commercial beef processing plants was evaluated. Sponge sampling of beef cattle was performed at five locations from the initial entry of the animals to the slaughter floor to the exit of carcasses from the "hotbox" cooler. For each sample, E. coli O157 prevalence was determined and total aerobic bacteria, Enterobacteriaceae, and E. coli O157 were enumerated. E. coli O157 was found on 76% of animal hides coming into the plants, but no carcasses leaving the cooler were identified as contaminated with E. coli O157. A positive relationship was seen between the incidence of E. coli O157 in hide samples and that in preevisceration samples. Aerobic plate counts and Enterobacteriaceae counts averaged 7.8 and 6.2 log CFU/100 cm2, respectively, on hides, and 1.4 and 0.4 log CFU/100 cm2, respectively, on chilled carcasses. Aerobic plate counts and Enterobacteriaceae counts on preevisceration carcasses were significantly related to the respective levels on the corresponding hides; the carcasses of animals whose hides carried higher numbers of bacteria were more likely to carry higher numbers of bacteria. Implementation of the sampling protocol described here would allow processors to evaluate the efficacy of on-line antimicrobial interventions and allow industrywide benchmarking of hygienic practices.  相似文献   

17.
The seasonal prevalence of Escherichia coli O157:H7, Salmonella, non-O157 E. coli (STEC), and stx-harboring cells was monitored at three Midwestern fed-beef processing plants. Overall, E. coli O157:H7 was recovered from 5.9% of fecal samples, 60.6% of hide samples, and 26.7% of carcasses sampled before the preevisceration wash. This pathogen also was recovered from 1.2% (15 of 1,232) of carcasses sampled at chilling (postintervention) at approximate levels of <3.0 cells per 100 cm2. In one case, the E. coli O157:H7 concentration dropped from ca. 1,100 cells per 320 cm2 at the preevisceration stage to a level that was undetectable on ca. 2,500 cm2 at the postintervention stage. The prevalence of E. coli O157:H7 in feces peaked in the summer, whereas its prevalence on hide was high from the spring through the fall. Overall, Salmonella was recovered from 4.4, 71.0, and 12.7% of fecal, hide, and preevisceration carcass samples, respectively. Salmonella was recovered from one postintervention carcass (of 1,016 sampled). Salmonella prevalence peaked in feces in the summer and was highest on hide and preevisceration carcasses in the summer and the fall. Non-O157 STEC prevalence also appeared to vary by season, but the efficiency in the recovery of isolates from stx-positive samples ranged from 37.5 to 83.8% and could have influenced these results. Cells harboring stx genes were detected by PCR in 34.3, 92.0, 96.6, and 16.2% of fecal, hide, preevisceration carcass, and postintervention carcass samples, respectively. The approximate level of non-O157 STEC and stx-harboring cells on postintervention carcasses was > or = 3.0 cells per 100 cm2 for only 8 of 199 carcasses (4.0%). Overall, the prevalence of E. coli O157:H7, Salmonella, and non-O157 STEC varied by season, was higher on hides than in feces, and decreased dramatically, along with pathogen levels, during processing and during the application of antimicrobial interventions. These results demonstrate the effectiveness of the current interventions used by the industry and highlight the significance of hides as a major source of pathogens on beef carcasses.  相似文献   

18.
A solution of natural, food-grade resin (Shellac) in ethanol was evaluated to treat samples of visually clean and dry cattle hides with the aim to reduce bacterial removability from the hides by swabbing. Hide treatment by 23% Shellac-in-ethanol solution reduced sponge-swabbing recoveries of general microflora (TVC) by a factor of 6.6 logs (>1000-fold larger than the 2.9 log reduction observed by ethanol alone), and of generic Escherichia coli and Enterobacteriaceae by factors of at least 2.9 and 4.8 logs, respectively. These reductions were superior to those achieved by a sanitizer rinse-vacuum hide treatment. Significantly greater reductions of TVC recoveries from hides were achieved when using higher Shellac concentrations (23 and 30% rather than 4.8–16.7%) and when Shellac solution temperatures were 20–40 °C rather than 50–60 °C. Furthermore, the Shellac-based treatment also markedly reduced the E. coli O157 prevalence (3.7-fold reduction) on natural, uninoculated hides, as well as the counts of E. coli O157 on artificially inoculated hides (2.1 log reduction). This preliminary study indicated that a “bacterial on-hide immobilisation” approach to reducing transmission of microorganisms from cattle hide is promising and so will be further explored.  相似文献   

19.
Hide has been established as the main source of carcass contamination during cattle processing; therefore, it is crucial to minimize the amount of Escherichia coli O157:H7 on cattle hides before slaughter. Several potential sources of E. coli O157: H7 are encountered during transportation and in the lairage environment at beef-processing facilities that could increase the prevalence and numbers of E. coli O157:H7 on the hides of cattle. On three separate occasions, samples were obtained from cattle at the feedlot and again after cattle were stunned and exsanguinated at the processing plant (286 total animals). The prevalence of E. coli O157:H7 on hides increased from 50.3 to 94.4% between the time cattle were loaded onto tractor-trailers at the feedlot and the time hides were removed in the processing plant. Before transport, nine animals had E. coli O157:H7 in high numbers (> 0.4 CFU/cm2) on their hides. When sampled at the slaughter facility, the number of animals with high hide numbers had increased to 70. Overall, only 29% of the E. coli O157:H7 isolates collected postharvest (221 of 764) matched pulsed-field gel electrophoresis types collected before transport. The results of this study indicate that transport to and lairage at processing plants can lead to increases in the prevalence and degree of E. coli O157:H7 contamination on hides and the number of E. coli O157:H7 pulsed-field gel electrophoresis types associated with the animals. More study is needed to confirm the mechanism by which additional E. coli O157:H7 strains contaminate cattle hides during transport and lairage and to design interventions to prevent this contamination.  相似文献   

20.
The objective of this study was to describe the prevalence of Escherichia coli O157 in the feces and on the hides of finishing beef cattle fed a standard diet and those fed diets supplemented with direct-fed microbials. Two hundred forty steers received one of four treatments throughout the feeding period: (i) control: no added microbials; (ii) HNP51: high dose of Lactohacillius acidophilus strain NP 51 (10(9) CFU per steer daily) and Propionibacterium freudenreichii (10(9) CFU per steer daily); (iii) HNP51+45: high dose of NP 51 (10(9) CFU per steer daily), P. freudenreichii (10(9) CFU per steer daily), and L. acidophilus NP 45 (10(6) CFU per steer daily); or (iv) LNP51+45: low dose of NP 51 (10(6) CFU per steer daily), P. freudenreichii (10(9) CFU per steer daily), and NP 45 (10(6) CFU per steer daily). Samples were collected from each animal and analyzed for the presence of E. coli O157 using immunomagnetic separation methods on day 0 (feces), 7 days before harvest (feces), and at harvest (feces and hide). At the end of the feeding period, cattle receiving HNP51 were 57% less likely to shed detectable E. coli O157 in their feces than were the controls (P < 0.01). For animals receiving HNP51+45 and LNP51+45, fecal prevalence did not differ from that of the controls. The prevalence of positive hide samples was least among cattle receiving HNP51+45 (3.3%); these animals were 79% less likely (P < 0.06) to have a positive hide sample than were the controls (prevalence = 13.8%). There was poor agreement of the culture results between fecal and hide samples collected from the same animal (kappa = 0.08; confidence interval = -0.05 to 0.2). Cattle supplemented with a high dose of NP 51 had reduced E. coli O157 prevalence in both fecal and hide samples, indicating that this treatment may be an efficacious preharvest intervention strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号