首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: An autoantibody to a nucleolar RNA helicase protein (Gu) was recently discovered in a patient with gastric antral vascular ectasia or watermelon stomach, a disorder that is increasingly being described in systemic sclerosis (SSc). The present study was undertaken to determine whether anti-Gu antibodies occur in connective tissue diseases (CTD) and, if so, to determine their frequencies and any clinical or immunogenetic associations. METHODS: Anti-Gu antibodies were determined by Western blotting of glutathione-purified glutathione S transferase-Gu fusion proteins against consecutive antinucleolar antibody-positive sera (HEp-2 cell substrate) collected over a 5-year period in a rheumatology antinuclear antibody (ANA) testing laboratory. RESULTS: Anti-Gu antibodies were found in 11 (10%) of 108 antinucleolar antibody-positive sera. The subjects with anti-Gu antibodies included 3 of 46 patients with SSc (7%), 3 of 17 patients with systemic lupus erythematosus (18%), 4 of 9 patients with undifferentiated CTD (44%), and 1 healthy relative of an SSc patient. None of the anti-Gu-positive patients had any symptoms suggestive of watermelon stomach. Increased frequencies of both HLA-DQA1*0501 and DQB1*0301 were found, but only DQB1*0301 maintained statistical significance after correction. CONCLUSION: Anti-Gu (nucleolar RNA helicase) antibodies occur in low frequencies in patients with CTDs who have antinucleolar antibodies by ANA testing, but they are not specific for SSc or the watermelon stomach lesion.  相似文献   

2.
To delineate domains essential for G-protein coupling in melanocortin 1 receptor (MC1R), we mutated polar and basic residues to alanine at eleven positions in the putative third intracellular loop and determined consequent changes in the ligand binding and generation of second messenger cAMP. Results demonstrate that ligand binding affinity was not affected by any of the mutations. However, every mutant displayed reduced functional response as compared to the wild type receptor. Replacement of residues (K226, R227, Q228, R229, H232, Q233 and K238) present in second half of third intracellular loop resulted in an almost complete loss of functional response. The results have demonstrated that the amino acid residues present in C-terminal portion of third intracellular loop of MC1R are involved in coupling to G-protein and that a region of four amino acids, K226-R227-Q228-R229 is essential for coupling of MC1R to G-protein.  相似文献   

3.
The diverse biological functions of retinoic acid (RA) are mediated through retinoic acid receptors (RARs) and retinoid X receptors. RARs contain a high affinity binding site for RA which is sensitive to treatment with sulfhydryl modification reagents. In an attempt to identify which Cys residues are important for this loss of binding, we created three site-specific RARbeta mutants: C228A, C258A, and C267A. The affinity for RA of all three mutant receptors was in the range of that of the wild type protein, suggesting that none of these Cys residues are critical for RA binding. Rather, these modified Cys residue(s) function to sterically hinder RA binding; however, the modified Cys residues critical for the inhibition of binding differ depending on the reagent employed. Only modification of Cys228 is necessary to inhibit RA binding when RARbeta is modified by reagents which transfer large bulky groups while both Cys228 and Cys267 must be modified when a small functional group is transferred. These data suggest that both Cys228 and Cys267 but not Cys258 lie in the ligand binding pocket of RARbeta. However, Cys228 lies closer to the opening of the RARbeta ligand binding pocket whereas Cys267 lies more deeply buried.  相似文献   

4.
In a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar kainate-binding protein (KBP), a member of the ionotropic glutamate receptor family, we have generated a three-dimensional model structure of the KBP extracellular domain. By an interplay between homology modeling and site-directed mutagenesis, we have investigated the kainate binding properties of 55 different mutants (corresponding to 43 positions) and studied the interactions of some of these mutants with various glutamatergic ligands. As a result, we present here the subsets of amino acids accounting for the binding free energies and specificities of KBP for kainate, glutamate, and CNQX and propose a three-dimensional model, at the microarchitectural level, of the glutamatergic binding domain.  相似文献   

5.
The homologous folate receptor (FR) types alpha and beta from both human and murine sources have opposite stereospecificities for reduced folate coenzymes and different affinities for a variety of (anti)folate compounds. The present study identifies the critical amino acid sequence divergence underlying functional differences between FR-alpha and FR-beta. Chimeric constructs of the cDNAs encoding human FR-alpha and FR-beta were expressed in human 293 fibroblasts. The resulting membrane associated proteins were characterized in terms of their ability to bind [3H]folic acid and their relative affinities for the (6S) and (6R) diastereoisomers of N5-methyltetrahydrofolate. Substitution of the amino-terminal portion (residues 1-92) in the mature FR-alpha polypeptide with the corresponding segment of FR-beta resulted in folate binding characteristics similar to FR-beta. Next, a series of chimeric constructs were generated, involving substitution of progressively shorter segments within residues 1-92 in FR-alpha with the corresponding peptides of FR-beta. In this fashion, it was determined that the alanine residue at position 49 in FR-alpha was critical for its functional divergence from FR-beta, since substitution at this position with Leu (the corresponding residue in FR-beta) resulted in the folate binding characteristics of FR-beta. Reciprocal substitution in FR-beta with peptide 1-92 of FR-alpha resulted in poor expression of a [3H]folic acid binding protein. By analysis of chimeric constructs, the poor [3H]folic acid binding of the FR-alpha(1-92)/beta(93-237) chimera could be attributed to interference of a short segment from FR-alpha in the vicinity of Ala 49 (peptide 39-59) with proper folding of the chimera. Conversion of the ligand binding properties of FR-beta to those of FR-alpha required the reciprocal mutation of Leu 49 to Ala, but in addition, substitution of one or more residues downstream of amino acid 92 of FR-beta with the corresponding residues in FR-alpha was essential. The homologous murine FR types alpha and beta, which are functionally analogous to the human receptor isoforms, also contain a similar Ala vs Leu substitution. These results indicate that steric/hydrophobic effects of the side chains of Leu vs Ala at position 49 will critically modulate the affinities and stereospecificities of FR isoforms for folate compounds. Furthermore, additional amino acid sequence divergence at one or more positions downstream of residue 92 in FR-alpha is also an essential determinant of the unique functional characteristics of this receptor isoform.  相似文献   

6.
The specificity of T cell-mediated immune responses is primarily determined by the interaction between the T cell receptor (TCR) and the antigenic peptide presented by the major histocompatibility complex (MHC) molecules. To refine our understanding of interactions between the TCR and the antigenic peptide of vesicular stomatitis virus (VSV) presented by the class I MHC molecule H-2Kb, we constructed a TCR alpha chain transgenic mouse in a TCR alpha-deficient background to define specific structural features in the TCR beta chain that are important for the recognition of the VSV/H-2Kb complex. We found that for a given peptide, a peptide-specific, highly conserved amino acid could always be identified at position 98 of the complementarity-determining region 3 (CDR3) loop of TCR beta chains. Further, we demonstrated that substitutions at position 6, but not position 1, of the VSV peptide induced compensatory changes in the TCR in both the amino acid residue at position 98 and the length of the CDR3beta loop. We conclude that the amino acid residue at position 98 of the CDR3beta loop is a key residue that plays a critical role in determining the specificity of TCR-VSV/H-2Kb interactions and that a specific length of the CDR3beta loop is required to facilitate such interactions. Further, these findings suggest that the alpha and beta chains of TCRs interact with amino acid residue(s) toward the N and C termini of the VSV peptide, respectively, providing functional evidence for the orientation of a TCR with its peptide/MHC ligand as observed in the crystal structures of TCR/peptide/MHC complexes.  相似文献   

7.
In order to understand the function of the first extracellular loop of the human thyrotropin receptor (hTSHR), each of two peptides of nine amino acids was inserted into the first extracellular loop of hTSHR. hTSHR cDNA was subcloned into the eukaryotic expression vector, pRc/CMV (hTSHR/pRc/CMV). B-hTSHR/pRc/CMV, a mutant hTSHR cDNA which encodes a hydrophilic peptide insert (AGTTRRVAI) and C-hTSHR/pRc/CMV which encodes a hydrophobic peptide insert (ATVLVVPMI) between +486 Ileu and +487 Asp of hTSHR were transfected into Chinese hamster ovary cells to generate the B-1 and C-6 cell lines, respectively. Neither thyrotropin (TSH) nor thyroid stimulating antibody (TSAb) stimulated cAMP production by B-1 or C-6 cells. An 125I-TSH binding assay showed that neither cell line bound TSH. Our data demonstrated that these mutations impaired both TSH binding and cAMP production. This evidence suggests that the first extracellular loop of hTSHR may have a crucial role in the TSH- and TSAb-dependent signal transduction.  相似文献   

8.
The mouse D3 dopamine receptor has been cloned from olfactory tubercle cDNA using polymerase chain reaction and has been found to exist in two alternatively spliced forms. These two mRNA isoforms differ by the presence or absence of 63 base pairs (bp), which encode 21 amino acids in the putative third cytoplasmic loop of the receptor. The longer form corresponds to the previously reported rat D3 dopamine receptor, to which it bears sequence homology of 94%. Northern blot analysis shows the mouse D3 receptor to be most abundant in the olfactory tubercle. Expression studies show the novel short D3 isoform to bind dopaminergic ligands with a D3-like pharmacological profile. Polymerase chain reaction analysis on different mouse brain regions shows the long and short D3 receptors to be present in the same tissues, the longer form invariably being the predominant one. Analysis of the gene for the mouse D3 dopamine receptor shows that no separate exon encodes the 63-bp stretch and reveals the presence of a consensus sequence for an acceptor site at the 3' end of the 63-bp stretch. This suggests that an internal acceptor site in the exon coding for the distal part of the third cytoplasmic loop directs alternative splicing of the D3 dopamine receptor.  相似文献   

9.
Vesico-ureteral reflux (VUR) is a frequent condition, but in most instances, the precise cause is unknown. We here review the evidence of a genetic aetiology of VUR, inherited as an autosomal dominant trait, with variable expression. We discuss the possible pathogenetic relationship between VUR and other types of uropathies and possible strategies towards the identification of genes underlying VUR are presented. The isolation of the gene(s) responsible for uropathies will not only lead to a better insight into the embryology of the urological system, the pathogenesis of uropathies, but also to a renewed interest from clinicians in congenital uropathies.  相似文献   

10.
P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.  相似文献   

11.
12.
A superfamily of growth factor and cytokine receptors has recently been identified, which is characterized by four spatially conserved cysteine residues, a tryptophan-serine motif (WSXWS) in the extracellular domain, and a proline-rich cytoplasmic domain. The high affinity human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (hGM-CSFR) consists of two subunits, alpha (hGM-CSFR alpha) and beta (hGM-CSFR beta), both of which are members of the receptor superfamily. In this study, we prepared mutations in conserved amino acids of the receptor subunit necessary for GM-CSF binding (hGM-CSFR alpha) and analyzed mutant receptors for low affinity binding, internalization, and high affinity binding when complexed with the beta subunit. Mutations in the cytoplasmic domain did not affect GM-CSF binding or receptor internalization. Mutation of a single conserved serine residue within the WSXWS motif diminishes cell surface receptor expression but not ligand binding. Mutation of either the second or third conserved cysteine residue of hGM-CSFR alpha resulted in complete loss of low affinity binding; however, co-expression of the cysteine 2 mutant with hGM-CSFR beta yielded a high affinity receptor complex. Since neither the cysteine 2 mutant nor the beta subunit can bind ligand alone, this result suggests that hGM-CSFR alpha and hGM-CSFR beta exist in a preformed heterodimeric protein complex on the plasma membrane.  相似文献   

13.
14.
Gain-of-function mutations of the thyrotropin receptor (TSHR) gene have been invoked as one of the major causes of toxic thyroid adenomas. In a toxic thyroid nodule, we recently identified a 9-amino acid deletion (amino acid positions 613-621) within the third intracellular (i3) loop of the TSHR resulting in constitutive receptor activity. This finding exemplifies a new mechanism of TSHR activation and raises new questions concerning the function of the i3 loop. Because the i3 loop is thought to be critical for receptor/G protein interaction in many receptors, we systematically reexamined the role of the TSHR's i3 loop for G protein coupling. Thus, various deletion mutants were generated and functionally characterized. We identified an optimal deletion length responsible for constitutive activity. If the number of deleted amino acids was reduced, elevated basal cAMP accumulation was found to be concomitantly diminished. Expansion of the deletion dramatically impaired cell surface expression of the receptor. Shifting the deletion toward the N terminus of the i3 loop resulted in unaltered strong constitutive receptor activity. In contrast, translocation of the deletion toward the C terminus led to significantly reduced basal cAMP formation, most probably due to destruction of a conserved cluster of amino acids. In this study, we show for the first time that amino acid deletions within the i3 loop of a G protein-coupled receptor result in constitutive receptor activity. In the TSHR, 75% of the i3 loop generally assumed to play an essential role in G protein coupling can be deleted without rendering the mutant receptor unresponsive to thyrotropin. These findings support a novel model explaining the molecular events accompanying receptor activation by agonist.  相似文献   

15.
16.
Involvement of the third cytoplasmic (3i) loop (residues 533 to 555) of the rat testicular FSH receptor in the mechanism of FSH signal transduction was examined using light membranes prepared from immature rat testes, monolayer cultures of rat Sertoli cells, and a synthetic peptide strategy. This region of the FSH receptor is structurally related to G protein-activator regions identified in other G protein-coupled receptors. FSHR-(533-555) peptide amide stimulated guanine nucleotide exchange in rat testis light membranes, presumably via its interaction with membrane-associated G protein. The peptide failed to inhibit FSH binding to testis membrane receptors, indicating that the nucleotide exchange effect was not a result of peptide interaction with receptor. When incubated with cultured Sertoli cells from immature rat testes, FSHR-(533-555) peptide amide consistently and significantly inhibited FSH stimulation of cAMP and estradiol biosynthesis, but failed to inhibit forskolin stimulation of each. The peptide effect, therefore, was not due to a direct interaction with adenylyl cyclase. Since FSHR-(533-555) peptide amide did not inhibit FSH binding to membrane receptor, these results imply entry of the peptide into the Sertoli cell, possibly by vesicular internalization or diffusion. Indeed, the inhibitory effects of FSHR-(533-555) peptide amide on FSH-stimulated estradiol biosynthesis were prevented by pretreating Sertoli cells with phenylarsine oxide, an inhibitor of FSH receptor internalization. FSHR-(533-555) was without effect on basal levels of cAMP and estradiol biosynthesis, indicating absence of toxicity at the concentrations tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Susceptibility of lipoproteins to oxidation is partly determined by their content in endogenous antioxidants, but also by the polyunsaturated fatty acids (PUFA)/monounsaturated fatty acids (MUFA) ratio. The aim of our study was to enrich human high-density lipoproteins (HDLs) with dioleoylphosphatidylcholine (DOPC) in order to modify the PUFA/MUFA ratio while maintainig the alpha-tocopherol/PUFA ratio constant and to appreciate the consequences of this enrichment before and after copper-induced oxidation. The enrichment of HDLs with DOPC was obtained by incubation of these lipoproteins with DOPC liposomes and further reisolation of HDLs. The consequent 40% HDL enrichment in MUFA was concomitant with a 35% loss in PUFA (MUFA/PUFA ratio = 1.43). The enrichment of HDLs with DOPC led to a 40% decrease in alpha-tocopherol content, which kept a constant alpha-tocopherol/PUFA ratio. The DOPC-HDLs exhibited a lower oxidizability by copper than the nonenriched HDLs (NE-HDLs), as shown by their twofold longer lag phase and the threefold lower propagation rate. Moreover, DOPC-HDLs led to a six- to sevenfold lower production of hydroperoxide molecular species from phosphatidylcholine and cholesteryl esters than NE-HDLs after 24 h copper oxidation. With regard to the cholesterol effluxing capacity, copper oxidation of HDLs led to a decrease of this property. However, our results clearly showed that DOPC enrichment of HDLs allowed us to keep a better effluxing capacity than in NE-HDLs after 24 h oxidation (22.3% vs 17.4%, respectively). Since apo A-I was degraded as well in DOPC-HDLs as in NE-HDLs, the better effluxing capacity of DOPC-HDLs could not come from a preserved integrity of apo A-I. It could be partly related to the improved fluidity of oxidized DOPC-HDLs compared to oxidized NE-HDLs, as shown by electron spin resonance data (correlation-relaxation time at 24 degreesC = 2.20 ns vs 3.00 ns after 24 h oxidation, in DOPC-HDLs and in NE-HDLs, respectively). Besides, it could also be hypothesized that the sevenfold lower content of phosphatidylcholine hydroperoxides in DOPC-HDLs than in NE-HDLs after 24 h copper oxidation could be involved in the better ability of oxidized DOPC-HDLs to mobilize cellular cholesterol.  相似文献   

18.
The amino acid sequence 256-275 of the human thyrotropin (TSH) receptor extracellular domain has previously been shown to participate in a high affinity TSH binding site by a synthetic peptide approach as well as by site-directed mutagenesis. To further investigate this binding site, we synthesized a series of peptides with alanine substitutions for each residue in the native sequence. Peptides were also synthesized containing truncations or deletions of the native sequence. Each peptide was tested for its ability to inhibit 125I-bTSH binding to porcine thyroid membrane preparations, and the concentration at which 50% inhibition of binding occurred was determined (EC50). Alanine substitution at residues Tyr258, Cys262, Cys263, Phe265, Lys266, Asn267, Lys269, Lys270, and Arg272 all resulted in statistically significant decreases in activity when compared to the native sequence (p < 0.05). Alanine substitution of the remaining residues did not alter their activity. Comparison of this sequence with the corresponding sequences of the remaining glycoprotein hormone receptors (human lutropin and human follitropin receptors) reveals that these residues lie within one of the most highly conserved regions of the extracellular domain. We conclude that 9 specific amino acids within the sequence 256-275 of hTSHr (-Y--CC-FKN-KK-R--) participate in the interaction of the hTSHr-extracellular domain with TSH. This may represent a site in which the nonconserved residues are involved in the binding of the beta-subunit and the conserved residues are involved in the binding of the common alpha-subunit or a region of the beta-subunit that is common to all glycoprotein hormones.  相似文献   

19.
Interactions between the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (ryanodine receptor or RyR1) and the loop linking domains II and III (II-III loop) of the skeletal muscle L-type Ca2+ channel (dihydropyridine receptor or DHPR) are critical for excitation-contraction coupling in skeletal muscle. The DHPR II-III loop was fused to glutathione S-transferase- or His-peptide and used as a protein affinity column for 35S-labeled in vitro translated fragments from the N-terminal three-fourths of RyR1. RyR1 residues Leu922-Asp1112 bound specifically to the DHPR II-III loop column, but the corresponding fragment from the cardiac ryanodine receptor (RyR2) did not. The use of chimeras between RyR1 and RyR2 localized the interaction to 37 amino acids, Arg1076-Asp1112, in RyR1. The RyR1 922-1112 fragment did not bind to the cardiac DHPR II-III loop but did bind to the skeletal muscle Na+ channel II-III loop. The skeletal DHPR II-III loop double mutant K677E/K682E lost most of its capacity to interact with RyR1, suggesting that two positively charged residues are important in the interaction between RyR and DHPR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号