首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

2.
3.
We have studied the GABAergic projections to the inferior colliculus (IC) of the rat by combining the retrograde transport of horseradish peroxidase (HRP) and immunohistochemistry for gamma-amino butyric acid (GABA). Medium-sized (0.06-0.14 microliter) HRP injections were made in the ventral part of the central nucleus (CNIC), in the dorsal part of the CNIC, in the dorsal cortex (DCIC), and in the external cortex (ECIC) of the IC. Single HRP-labeled and double (HRP-GABA)-labeled neurons were systematically counted in all brainstem auditory nuclei. Our results revealed that the IC receives GABAergic afferent connections from ipsi- and contralateral brainstem auditory nuclei. Most of the contralateral GABAergic input originates in the IC and the dorsal nucleus of the lateral lemniscus (DNLL). The dorsal region of the IC (DCIC and dorsal part of the CNIC) receives connections mostly from its homonimous contralateral region, and the ventral region from the contralateral DNLL. The commissural GABAergic projections originate in a morphologically heterogeneous neuronal population that includes small to medium-sized round and fusiform neurons as well as large and giant neurons. Quantitatively, the ipsilateral ventral nucleus of the lateral lemniscus is the most important source of GABAergic input to the CNIC. In the superior olivary complex, a smaller number of neurons, which lie mainly in the periolivary nuclei, display double labeling. In the contralateral cochlear nuclei, only a few of the retrogradely labeled neurons were GABA immunoreactive. These findings give us more information about the role of GABA in the auditory system, indicating that inhibitory inputs from different ipsi- and contralateral, mono- and binaural auditory brainstem centers converge in the IC.  相似文献   

4.
We describe the descending projections from the central nucleus of the inferior colliculus (CNIC) in guinea pig. Focal injections of the tracer biocytin, made in physiologically defined frequency regions of the CNIC, labelled laminated axonal terminal fields in the ipsilateral dorsal nucleus of the lateral lemniscus, and bilaterally in the ventral nucleus of the trapezoid body and the dorsal cochlear nucleus. Labelling was also present in the rostral periolivary nucleus, but we could not distinguish a clear border between the terminal fields in this nucleus and those in the ventral nucleus of the trapezoid body. Labelling observed in the ventral nucleus of the lateral lemniscus, and to a lesser extent in the dorsal nucleus of the lateral lemniscus, was accompanied by retrogradely labelled somata and therefore we cannot conclude unequivocally that the CNIC projects to these lemniscal nuclei. Where the labelling was ordered topographically, its position varied as a function of the best frequency at the injection site. High-frequency regions in the CNIC project to the medial parts of the ventral nucleus of the trapezoid body and dorsal cochlear nucleus, while low-frequency regions in the CNIC project to the lateral parts of the ventral nucleus of the trapezoid body and dorsal cochlear nucleus. Additional axonal labelling with terminal boutons, but with no apparent topographical arrangement, was present in the ipsilateral horizontal cell group, sagulum, and also bilaterally in the superficial granule cell layer of the ventral cochlear nucleus and layer 2 of the dorsal cochlear nucleus. Our findings are consistent with the existence of tonotopically organised feedback projections from the CNIC to the brainstem nuclei that project to it.  相似文献   

5.
Neuron survival and axonal regeneration become severely limited during early postnatal development. In conjunction with our recent organotypic analysis of regeneration in the auditory midbrain, we wished to determine whether neurotrophins could serve as a trophic substance during the postnatal period. Therefore, the current study examines the development of three neurotrophin receptor tyrosine kinases (TrkA, TrkB, and TrkC) in the gerbil auditory brainstem. Immunoreactivity to TrkA, the nerve growth-factor receptor, was observed in nonneuronal cells during the first two postnatal weeks. In the cochlear nucleus of mature animals, however, there was a TrkA-positive neuronal subpopulation. In contrast, immunoreactivity to TrkB and TrkC (the receptors for brain-derived neurotrophic factor and neurotrophin-3, respectively) displayed a widespread distribution in the auditory brainstem. At postnatal day 0, TrkB and TrkC staining was virtually absent from auditory nuclei, although immunopositive neurons were present in the mesencephalic trigeminal nucleus. By postnatal day 7, TrkB- and TrkC-positive neurons were present in most brainstem auditory nuclei. At postnatal day 15, TrkB immunoreactivity was observed throughout the inferior colliculus (IC), the cochlear nucleus, the medial and lateral nuclei of the trapezoid body, and the lateral superior olive, whereas TrkC labeled only a subpopulation of neurons within the central nucleus of the IC. The TrkB immunoreactivity was present on both neuronal somata and dendrites, whereas TrkC was generally restricted to cell bodies. At postnatal day 30, TrkB immunostaining was observed on most neurons of the IC. The medial and lateral nuclei of the trapezoid body displayed extremely strong TrkB staining, followed by the cochlear nucleus. In contrast, the TrkC immunostaining was decreased dramatically by postnatal day 21. Observations at the ultrastructural level confirmed a neuronal localization of TrkB and TrkC. Immunostaining for both receptors was restricted largely to the postsynaptic density of synaptic profiles in both dendrites and somata. In summary, this study illustrates a differential pattern of immunoreactivity between three neurotrophin receptors during development. The general increase of TrkB expression is well correlated with the onset of sound-evoked activity in this system, and its synaptic localization suggests that it may be involved in the modulation or maintenance of postsynaptic physiology.  相似文献   

6.
Presbycusis is a sensory perceptual disorder involving loss of high-pitch hearing and reduced ability to process biologically relevant acoustic signals in noisy environments. The present investigation is part of an ongoing series of studies aimed at discerning the neural bases of presbycusis. The purpose of the present experiment was to delineate the inputs to a functionally characterized region of the dorsomedial inferior colliculus (IC, auditory midbrain) in young, adult CBA mice. Focal, iontophoretic injections of horseradish peroxidase were made in the 18-24 kHz region of dorsomedial IC of the CBA strain following physiological mapping experiments. Serial sections were reacted with diaminobenzidine or tetramethylbenzidine, counterstained and examined for retrogradely labeled cell bodies. Input projections were observed contralaterally from: all three divisions of cochlear nucleus; intermediate and dorsal nuclei of the lateral lemniscus (LL); and the central nucleus, external nucleus and dorsal cortex of the IC. Input projections were observed ipsilaterally from: the medial and lateral superior olivary nuclei; the superior paraolivary nucleus; the dorsolateral and anterolateral periolivary nuclei; the dorsal and ventral divisions of the ventral nucleus of LL; the dorsal and intermediate nuclei of LL; the central nucleus, external nucleus and dorsal cortex of the IC outside the injection site; and small projections from central gray and the medial geniculate body. These findings in young, adult mice with normal hearing can now serve as a baseline for similar experiments being conducted in mice of older ages and with varying degrees of hearing loss to discover neural changes that may cause age-related hearing disorders.  相似文献   

7.
The expression of the terminal saccharide determinant CD15 (3[a1-3]-fucosyl-N-acetyl-lactosamine) was evaluated in the central auditory system of the human developing brain by using monoclonal antibodies against this epitope. CD15 immunoreactivity was first observed in the ventral cochlear nucleus at 10 weeks of gestation, whereas the dorsal cochlear nucleus became positive from 13 weeks of gestation. In both nuclei, the intensity of immunoreactivity increased until 16 weeks of gestation and lasted until 25 weeks of gestation. In the inferior colliculi, CD15 was poorly expressed in the central nucleus from 13 to 23 weeks of gestation and later with moderate levels until birth. Within the medial geniculate nucleus, a biphasic pattern of expression was observed with peaks around 14-17 and 21-24 weeks of gestation. Heterogeneous expression in the medial geniculate nucleus, which was associated either with neurons or the neuropil, allowed distinction of subnuclei. In many of the auditory pathway structures (e.g., ventral cochlear nucleus and central nucleus of the inferior colliculus), a heterogeneous pattern of CD15 expression in the form of repeating parallel bands, possibly related to tonotopic organization, became transiently apparent around 23 weeks of gestation, whereas in the magnocellular part of the medial geniculate nucleus, a striking modular or compartmental arrangement of immunoreactive structures (which could also be associated with tonotopic organization) was also noted at about 23 weeks of gestation. We propose that the initiation of CD15 expression in each nucleus heralds the appearance of functional contacts and that high levels of neuropil labeling are related to the formation of nonstabilized synaptic contacts. Thus, transient CD15 expression in the central auditory system is possibly correlated with phases of functional plasticity in this pathway.  相似文献   

8.
We used the expression of the immediate-early gene c-fos, a marker of neuronal activation, to localize brainstem neuronal populations functionally related to fictive cough (FC). In decerebrate, paralyzed, and ventilated cats, the level of Fos-like immunoreactivity (FLI) was examined in five groups of animals: (1) controls, sham-operated unstimulated animals; (2) coughing cats, including both animals in which FC was elicited by unilateral electrical stimulation of the superior laryngeal nerve (SLN) and (3) those in which FC was elicited by bilateral SLN stimulation; (4) stimulated-treated cats, in which bilateral SLN stimulation was applied after selective blockade of FC by codeine; and (5) codeine controls, sham-operated unstimulated cats subjected to administration of codeine. Fifteen brainstem structures were compared for numbers of labeled cells. Because codeine selectively blocks FC, brainstem nuclei activated specifically during FC were identified as regions showing increased FLI after FC and significant reductions in FLI after FC suppression by codeine in stimulated-treated cats. In coughing animals, we observed a selective immunoreactivity in the interstitial and ventrolateral subdivisions of the nucleus of the tractus solitarius, the medial part of the lateral tegmental field, the internal division of the lateral reticular nucleus, the nucleus retroambiguus, the para-ambigual region, the retrofacial nucleus, and the medial parabrachial nucleus. FLI in all these nuclei was significantly reduced in stimulated-treated cats. Our results are consistent with the involvement of neurons overlapping the main brainstem respiratory-related regions as well as the lateral tegmental field and the lateral reticular nucleus in the neural processing of laryngeal-induced FC.  相似文献   

9.
Intraspecific confrontation between male rats represents a biologically relevant form of social stress. C-fos expression has been used to map the pattern of neural activation following either a single (acute) or repeated (10 times) exposure of an intruder male to a larger male in the latter's home cage. These conditions induce high levels of aggressive interaction. Sixty minutes after a single defeat, there was intense c-fos expression (quantified using image analysis) in restricted areas of the basal forebrain (including lateral septum, bed nucleus of stria terminalis, lateral preoptic area, lateral hypothalamic area, paraventricular nucleus, and medial and central amygdala) as well as in the autonomic and monoaminergic nuclei of the brainstem (central grey, dorsal and median raphe, locus coeruleus and nucleus of the solitary tract). After the tenth defeat, this pattern was modified despite persistently high levels of aggression. Some areas in the forebrain (bed nucleus of stria terminalis, paraventricular nucleus and medial amygdala) continued to express increased c-fos; others (the septum, lateral hypothalamic area, lateral preoptic area and central amygdala) no longer expressed c-fos. The brainstem response was equally varied: the central grey and the raphe nuclei continued to respond after repeated defeat, whereas the solitary nucleus and locus coeruleus did not. On the other hand, there was no change in the behaviour of intruder rats after repeated defeat. This study shows the pattern of adaptation at a cellular level in the basal forebrain and brainstem to repeated defeat. As in our previous studies of repeated restraint, modulation in the expression of c-fos following repeated stress is highly regionally specific, suggesting that differential neural processing is involved in adaptation to social stress.  相似文献   

10.
11.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfated proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfated proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemistry, revealed consistent overlapping of their distribution patterns.  相似文献   

12.
The projections to physiologically defined tonotopic regions of the central nucleus of the inferior colliculus (ICC) from the adult rat's superior olivary complex (SOC) and lateral lemniscus were investigated using retrograde tract tracing methods. Iontophoretic injections of the retrograde tracers, Fluoro-Gold (FG) or horseradish peroxidase (HRP), were made into the ICC through a glass micropipette, which also served as a recording electrode to determine the frequency response at the injection site. Injections were made into frequency-specific regions based on the best responses of neurons to contralaterally presented tones between 2 25 kHz. In the dorsal nucleus of the lateral lemniscus (DNLL) neurons were labeled both ipsilaterally and contralaterally to the injection site with a larger proportion projecting to the contralateral side. The distribution of labeled cells was concentric, with high frequencies represented along the outer margin and low frequencies represented centrally within DNLL. The lateral superior olive (LSO) was labeled bilaterally, with high frequencies represented medially and low frequencies laterally along the nuclear axis. The projection from the medial superior olive (MSO) was ipsilateral, with high frequencies represented ventrally and low frequencies dorsally. The projection from the superior paraolivary nucleus (SPN) was also largely ipsilateral, with high frequencies represented medially and low frequencies laterally. The intermediate and ventral nuclei of the lateral lemniscus (INLL and VNLL) were also labeled ipsilaterally and exhibited a distribution of tracer that depended on the frequency of the injection site: the low frequency projection was banded but the high frequency projection was more evenly distributed.  相似文献   

13.
The present study was conducted to demonstrate immunohistochemically, the sites of c-fos protein expression in the brains of mice subjected to acute and chronic social defeat stress. To induce social stress, mice were placed in situations of species-specific intermale aggression either only once or five times at 24 h intervals. Two hours after the single or fifth defeat stress, many c-fos immunoreactive neurons were observed in a variety of brain regions including the limbic system and sensory relay nuclei. The c-fos immunoreactive neurons in the brains of acute defeat mice decreased in number with time and the c-fos staining pattern of acute defeat mice became indistinguishable from that of normal control mice by 24 h after the single defeat stress. In contrast, chronic defeat stress induced persistent c-fos expression in the forebrain and brainstem even 24 h after the fifth defeat stress. In the forebrain of chronic defeat mice, the olfactory bulb, cingulate cortex, hippocampus, entire hypothalamus, septal nuclei and the amygdaloid complex, except for the central nucleus, were labeled intensely with c-fos antiserum. In the lower brainstem, nerve cells with c-fos immunoreactivity were seen mainly in ascending and descending sensory relay nuclei relevant to auditory and vestibular transmission, epicritic sensation (gracile and external cuneate nuclei), pain inhibition (central gray and raphe nuclei), and viscerosensory transmission (solitary tract nucleus). The differences in c-fos expression among the normal control, acute and chronic defeat mice were evaluated by an enumeration of the immunopositive neurons within each brain nucleus examined, and they were confirmed subsequently by statistical analysis. There was little c-fos expression in the nucleus putamen, lateral, ventral and posterior thalamic nuclei, pretectal nuclei, medial geniculate nucleus, red nucleus, substantia nigra, cerebellum, spinal cord, or cranial nerve nuclei. These findings suggest that chronic but not acute defeat stress causes persistent c-fos expression in more widespread brain regions than do any other stresses so far investigated. The present study may shed light on the central mechanisms by which behavioral abnormalities and/or chronic sociopsychological stress leads to the occurrence of abnormal behavior and/or psychosomatic disorders in experimental animals and humans.  相似文献   

14.
To evaluate the reversibility of neural function in the brainstem following ischemia, we investigated the effect of transient brainstem ischemia on the brainstem auditory evoked potential in gerbils. Brainstem ischemia was produced by bilateral extracranial occlusion of vertebral arteries. Local cerebral blood flow was measured by quantitative autoradiography after 5 min of ischemia and was reduced to less than 3 ml/100 g per min in the pons and lower midbrain, indicating severe and reproducible brainstem ischemia. During brainstem ischemia, brainstem auditory evoked potential waveforms disappeared completely. After a brief ischemic insult (5 min), all four brainstem auditory evoked potential components recovered to normal. After longer ischemic insults (10-30 min), brainstem auditory evoked potential components never recovered to normal. Microtubule-associated protein 2 immunoreactivity revealed differential vulnerability of the acoustic relay nuclei in the brainstem. Neurons in the lateral lemniscus were most vulnerable, followed in order by neurons in the trapezoid body, the superior olive and the cochlear nucleus. We also demonstrated a close relationship between the reversibility of ischemia-induced changes on brainstem auditory evoked potential and ischemic lesions of these relay nuclei. These data may be useful for evaluating the therapeutic window of thrombolytic therapy during acute vertebrobasilar occlusion.  相似文献   

15.
Ca2+ influx through glutamate receptors (GluRs) is thought to play a crucial part in developmental processes and neuronal plasticity. Here we have examined the spatiotemporal distribution of Ca2+-permeable GluRs in auditory brainstem neurons of the rat from birth to adulthood, using the cobalt-staining technique of Pruss and collaborators. In slices of young adult rats, 1 mM glutamate evoked intense cobalt uptake in subsets of neurons in the ventral cochlear nuclei, the medial nucleus of the trapezoid body, the lateral and the medial superior olive, and the lateral lemniscal nuclei. Neurones in the central nucleus of the inferior colliculus, and thalamic auditory nuclei appear to express few, if any, Ca2+-permeable GluRs. Thus, in adults, Ca2+-permeable GluRs are present in neurons of almost all main relay stations of the auditory brainstem. During development, cobalt-stained cells first appeared at about hearing onset (at postnatal day 12 [P12]). At P16, staining levels were highest and the pattern of distribution was already adult-like. The staining intensity slightly declined during the fourth postnatal week. In contrast, Ca2+-permeable receptors were detected in the external cortex of the inferior colliculus as early as P4. Our results show that auditory neurons, characterized by a high temporal precision in neuronal activity, display Ca2+-permeable GluRs. Because Ca2+ permeability appears at about the onset of hearing and is highest during the following 2 weeks, Ca2+ influx through GluRs is likely to be implicated in remodelling processes occurring during this ontogenetic period.  相似文献   

16.
In the subcortical auditory system of Rhinolophus rouxi, antibodies directed against the calcium-binding proteins parvalbumin, calbindin D-28k, and calretinin yield partly overlapping and partly complementary labeling patterns which are described in detail for each nucleus. The most general features of the labeling patterns are that: 1) Parvalbumin is a potent marker for large and heterogeneous populations of cells and puncta (presumed axon terminals) throughout the auditory pathway. 2) Immunostaining with the monoclonal calbindin-antiserum was typically absent or sparse in most auditory brainstem centers, but prominent in auditory nerve fibers and in cells of the medial geniculate body (MGB). 3) Calretinin label is abundant but more restricted to subsets of auditory nuclei or subpopulations of cells than parvalbumin. 4) Calcium-binding proteins are useful markers to define particular subregions or cell types in auditory nuclei: for example, i) different labeling patterns are obtained within the nuclei of the lateral lemniscus and adjacent tegmental zones; ii) in the inferior colliculus both calbindin- and calretinin-antisera yield similar regional specific staining patterns, but label different cell types; iii) subregions of the medial geniculate body have characteristic profiles of calcium-binding proteins; and iv) analyses of different nuclei showed that there is no simple common denominator for cells characterized by the expression of particular calcium-binding proteins, nor does labeling correspond in a straightforward way with specific functional systems. 5) there are profound differences between the calbindin labeling patterns seen in Rhinolophus and those in other mammals.  相似文献   

17.
Glutamate receptors mediate most excitatory synaptic transmission in the adult vertebrate brain, but their activation in developing neurons also influences developmental processes. However, little is known about the developmental regulation of the subunits composing these receptors. Here we have studied age-dependent changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in the cochlear nucleus complex (CN), the superior olivary complex (SOC), the nuclei of the lateral lemniscus, and the inferior colliculus of the developing rat. In the lateral superior olive, the medial nucleus of the trapezoid body, and the ventral nucleus of the lateral lemniscus, the distribution of AMPA receptor subunits changed drastically with age. While GluR1 and GluR2 subunits were highly expressed in the first 2 postnatal weeks, GluR4 staining was detectable only thereafter. GluR1 and GluR2 immunoreactivities rapidly decreased during the third postnatal week, with the GluR1 subunits disappearing from most neurons. In contrast, the adult pattern of the distribution of AMPA receptor subunits emerged gradually in most of the other auditory nuclei. Thus, progressive as well as regressive events characterized AMPA receptor development in some nuclei, while a monotonically maturation was seen in other regions. In contrast, the staining patterns of NMDA receptor subunits remained stable or only decreased during the same period. Although our data are not consistent with a generalized pattern of AMPA receptor development, the abundance of GluR1 subunits is a distinctive feature of early AMPA receptors. As similar AMPA receptors are present during plasticity periods throughout the brain, neurons undergoing synaptic and structural remodelling might have a particular need for these receptors.  相似文献   

18.
We analyzed changes in the expression of mRNAs for the axonal growth-promoting cell recognition molecules L1.1, L1.2, and neural cell adhesion molecule (NCAM) after a rostral (proximal) or caudal (distal) spinal cord transection in adult zebrafish. One class of cerebrospinal projection nuclei (represented by the nucleus of the medial longitudinal fascicle, the intermediate reticular formation, and the magnocellular octaval nucleus) showed a robust regenerative response after both types of lesions as determined by retrograde tracing and/or in situ hybridization for GAP-43. A second class (represented by the nucleus ruber, the nucleus of the lateral lemniscus, and the tangential nucleus) showed a regenerative response only after proximal lesion. After distal lesion, upregulation of L1.1 and L1.2 mRNAs, but not NCAM mRNA expression, was observed in the first class of nuclei. The second class of nuclei did not show any changes in their mRNA expression after distal lesion. After proximal lesion, both classes of brain nuclei upregulated L1.1 mRNA expression (L1.2 and NCAM were not tested after proximal lesion). In the glial environment distal to the spinal lesion, labeling for L1.2 mRNA but not L1.1 or NCAM mRNAs was increased. These results, combined with findings in the lesioned retinotectal system of zebrafish (Bernharnhardt et al., 1996), indicate that the neuron-intrinsic regulation of cell recognition molecules after axotomy depends on the cell type as well as on the proximity of the lesion to the neuronal soma. Glial reactions differ for different regions of the CNS.  相似文献   

19.
In order to identify cytochemical traits relevant to understanding excitatory neurotransmission in brainstem auditory nuclei, we have analyzed in the dorsal cochlear nucleus the synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc, three molecules probably involved in different steps of excitatory glutamatergic signaling. High levels of glutamate immunolabeling were found in three classes of synaptic endings in the dorsal cochlear nucleus, as determined by quantitation of immunogold labeling. The first type included auditory nerve endings, the second were granule cell endings in the molecular layer, and the third very large endings, better described as "mossy." This finding points to a neurotransmitter role for glutamate in at least three synaptic populations in the dorsal cochlear nucleus. The same three types of endings enriched in glutamate immunoreactivity also contained histochemically detectable levels of aspartate aminotransferase activity, suggesting that this enzyme may be involved in the synaptic handling of glutamate in excitatory endings in the dorsal cochlear nucleus. There was also extrasynaptic localization of the enzyme. Zinc ions were localized exclusively in granule cell endings, as determined by a Danscher-selenite method, suggesting that this ion is involved in the operation of granule cell synapses in the dorsal cochlear nucleus.  相似文献   

20.
This study demonstrates that many neurons in the somatosensory cortex, cingulate cortex, retrosplenial cortex and hippocampal subiculum of the mouse brain are covered by sulfated proteoglycans which are intensely negative-charged and stained with cationic iron colloid, while being digested with hyaluronidase. Neurons with similar perineuronal proteoglycans are also recognized in the extrapyramidal system (superior colliculus, red nucleus, reticular formation, vestibular nuclei and cerebellar nuclei), in the secondary auditory system (cochlear nuclei, nucleus of trapezoid body, inferior colliculus and nucleus of lateral lemniscus), in the vestibulo-ocular reflex system (vestibular nuclei and extraocular motor nuclei), and in the pupillary reflex system. The neurons with perineuronal sulfated proteoglycans in the cerebral cortices and hippocampal subiculum are usually labeled with the lectin Vicia villosa agglutinin, though those in the cerebellar, vestibular and cochlear nuclei may not be reactive to this lectin. Double staining of the retrosplenial cortex, hippocampal subiculum and cerebellar nuclei with Golgi's silver nitrate and cationic iron colloid indicates that the perineuronal sulfated proteoglycans are identical with the Golgi's reticular coating or glial nets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号