共查询到10条相似文献,搜索用时 15 毫秒
1.
In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal stiffness(CNS)conditions.The shear-induced variations in the normal displacement,shear stress,normal stress and sheared-off asperity mass are analyzed and correlated with the inclination angle of the critical waviness of joint surfaces.The results show that CNS condition gives rise to a smaller normal displacement due to the larger normal stress during shearing,compared with CNL condition.Under CNL conditions,there is one peak shear stress during shearing,whereas there are no peak shear stress for some cases and two peaks for other cases under CNS conditions depending on the geometry of joint surfaces.The inclination angle of the critical waviness has been verified to be capable of describing the joint surface roughness and anisotropy.The joint surface is more significantly damaged under CNS conditions than that under CNL conditions.With increment of the inclination angle of the critical waviness,both the normal displaceme nt and shea red-off asperity mass increase,following power law functions;yet the coefficient of deternination under CNL conditions is larger than that under CNS conditions.This is because the CNS condition significantly decreases the inclination angle of the critical waviness during shearing due to the larger degree of asperity degradation. 相似文献
2.
采用双向循环恒刚度剪切试验对预制桩的侧阻退化效应进行试验研究。研究显示,剪切应力(摩阻力)随剪切循环数的增加呈指数型衰减,衰减主要发生在开始的部分循环内,约 25 个循环后基本达到稳定。剪切过程中剪切带发生明显的剪缩,导致法向应力释放,此为摩阻力退化的 原因之一 。随剪切循环数的增加界面摩擦角发生指数型退化直至达到残余值,此为摩阻力退化的另一原因。法向刚度的大小决定剪切应力、法向应力和界面摩擦角衰减的速度和幅度,法向刚度越大,衰减越快且残余值越小。恒刚度剪切试验说明桩土界面摩擦力的退化与桩周土的坚硬程度密切相关,土体越硬则侧阻退化现象越明显。 相似文献
3.
《岩石力学与岩土工程学报(英文版)》2020,12(6):1234-1248
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering. It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system. Previous studies have proposed some optimal rib parameters (e.g. rib spacing); unfortunately, the interface shear behaviors are generally ignored. Therefore, determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible. The load-bearing capacity and deformation capacity vary as bolt profiles differ, suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles. The aim of this study is to investigate the effects of bolt profiles (with/without ribs, rib spacing, and rib height) on the shear behaviors between the rock bolt and grout material using direct shear tests. Thereby, systematic interfacial shear tests with different bolt profiles were performed under both constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions. The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does, in particular at the post-yield stage. The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions, and optimize selection of rock bolts under in situ rock conditions. 相似文献
4.
5.
竖向循环荷载作用下桩土界面的作用机理是研究桩土摩擦疲劳的关键。针对循环荷载作用下桩-粉土界面的剪切性能,使用改进的剪切试验装置在恒刚度条件下进行循环剪切试验,研究循环次数、累积位移和法向刚度对其摩擦疲劳性能、循环后单调剪切性能的影响。试验结果表明,粉土在循环剪切过程中,法向应力和剪应力在初始10个循环内随循环数增加快速衰减,随着循环进行,逐渐趋于稳定;单次循环内在剪切位移方向变化时,土体呈现表现出剪缩-剪胀-剪缩交替现象,总体变形呈现剪缩的趋势;循环荷载作用下,粉土界面的法向应力和剪应力随法向刚度增大衰减速率增大,达到稳定的累积循环位移越小;粉土循环后的单调剪切、法向应力恢复的单调剪切的剪应力比小于首次单调剪切试验值,且法向应力恢复的循环后剪切试验的剪胀程度较小,表明循环剪切过程中界面处粉土颗粒棱角破碎,颗粒变得光滑。在对试验数据分析的基础上,提出了与累积位移、法向刚度和初始应力相关的无量纲累积位移,建立了法向应力和界面摩擦角随累积位移的衰减方程。 相似文献
6.
《Geotextiles and Geomembranes》2020,48(5):625-633
This research evaluates the shear strength properties of unreinforced and geogrid-reinforced ladle furnace slag (LFS), electric arc furnace slag (EAFS) and a blend comprising 50% LFS and 50% EAFS (LFS50+EAFS50) using the large direct shear testing apparatus (DST). The large DST results of unreinforced steel slags indicated that LFS had the lowest shear stress ratio at the peak shear strength among all samples, while LFS50+EAFS50 samples (both unreinforced and reinforced) demonstrated the highest shear stress ratio amongst the tested samples. A higher apparent cohesion value was achieved with the inclusion of biaxial geogrid in LFS and EAFS samples as compared to the triaxial geogrid interface. The observed behavior can be attributed to the larger aperture size of the biaxial geogrid compared to the triaxial geogrid leaving more void planar space for a direct interaction between slag particles. In contrast, the apparent cohesion of LFS50+EAFS50 without a geogrid interface was high and did not change significantly with the insertion of geogrid. Given, the range of internal friction angles for ordinary soils, studied slag by-products achieved internal friction angles in excess of 59° (with no geogrid interface) and these significant values proved highly beneficial application for these waste materials in pavement construction. 相似文献
7.
《Geotextiles and Geomembranes》2022,50(1):99-115
The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. A series of cyclic direct tests under cyclic normal loading was conducted on geogrid-gravel interface. The relationship among the amplitudes of cyclic normal loading and shear displacement and frequencies in the horizontal and vertical directions with interface shear strength and volume change was investigated. Test results showed that the relative time shift, shear stiffness, and enhance coefficient increased with increasing amplitude of cyclic normal loading. The interface exhibited shear hardening and softening with increasing amplitude of shear displacement. The vertical displacement decreased with increasing amplitude of cyclic normal loading but increased with increasing amplitude of shear displacement. Furthermore, three patterns were analysed for different frequencies in two loading directions. The value of vertical displacement was largest when the normal loading impact frequency was larger than the cyclic horizontal shear frequency, and smallest at equal frequencies in two loading directions. The shear stiffness was positively correlated with the amplitude of cyclic normal loading. However, it was negatively correlated with the amplitude of shear displacement. The value of the damping ratio was smallest under constant normal loading at a shear displacement amplitude of 0.5 mm. 相似文献
8.
运用最新研制的80 t三维多功能土工试验机,对工程中常用的粗粒土与人造粗糙钢板形成的接触面在常刚度法向边界条件切向应力控制下的动力特性进行了试验研究,并分析了切向控制方式的影响。接触面在剪切时产生了明显体变,可分为可逆和不可逆两部分;可逆性剪切体变的发展程度主要与切向位移幅值有关;不可逆性剪切体变的发展与剪切路程有很大关系;接触面体变出现了一定的异向性,且受切向加载路径、切向控制方式的影响。随着循环剪切的进行接触面切向位移发生明显偏移,其幅值也逐渐增加,受切向加载路径影响较大;切向应力、应力比、法向位移与切向位移的关系与切向加载路径、切向控制方式有很大关系。接触面在初始剪切时没有达到、随后逐渐达到抗剪强度,但破坏状态持续时间很短;其抗剪强度指标与切向控制方式关系不大。 相似文献
9.
粗粒土与结构接触面三维力学特性的直剪试验研究 总被引:2,自引:0,他引:2
运用80t三维多功能土工试验机,对粗粒土与人造粗糙钢板接触面的三维力学特性进行试验研究,包括常法向应力条件下单调剪切试验(法向应力σ=200kPa、400kPa、700kPa、1000kPa)及十字、单向圆形和往返圆形路径下循环剪切试验(σ=400kPa)。结果表明:在单调和循环剪切时接触面均产生了明显的剪切体变,循环剪切时可分为遵循不同规律的可逆和不可逆两部分;不同剪切路径下接触面切向应力-应变关系曲线有很大差别,但主剪应力-主切向位移关系类似;随循环剪切的进行,接触面在逐渐剪切硬化,主剪应力-主切向位移曲线形式均由双曲线形式向理想弹塑性模式转变;接触面抗剪强度具有各向同性,其与法向应力关系符合摩尔-库伦准则;法向应力对接触面单调力学特性影响显著,剪切路径对其循环力学特性(剪切体变、切向应力-应变关系及破坏状态等)有重要影响。 相似文献
10.
已有的土与结构接触面室内剪切试验多集中在恒荷载和恒位移加载条件下接触面力学特性的研究,而预制桩基础沉桩过程中桩土界面受力条件与恒刚度加载类似,即桩土界面法向应力随桩周土体法向位移是动态变化的。针对目前黏性土中桩土界面大型恒刚度的试验手段比较缺乏,自主设计研制了一种大型恒刚度直剪仪用于桩土界面力学特性的测试。该直剪仪考虑了桩周土体变形特点,剪切过程中桩土界面接触面面积始终保持不变,能够准确模拟桩土界面剪切试验;采用弹簧组加载系统和数控电机控制系统,法向可提供恒刚度边界条件,水平切向可按位移控制,能够实现桩土界面上直线和循环剪切的加载路径。试验结果表明:该直剪仪能够很好地再现黏性土中桩土界面在恒刚度加载条件下直线剪切的力学响应,为静压桩沉桩过程的桩土界面力学特性的研究提供了基础。 相似文献