首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文描述了对醋酸纤维素进行紫外辐照接枝,提高了膜的反渗透性能,尤其改善了膜的耐压密性。对几种膜因素如“蒸发时间,热处理温度,冷凝时间等对膜的反渗透性能的影响”进行了研究。结果表明,该膜在操作压力为20kg/cm~2,以自来水为进料液的条件下,脱盐率可达96.1%,水通量为0.45m~3/m~2·d。  相似文献   

2.
三羟甲基三聚氰胺和呋喃甲醇在聚砜支撑膜上进行共缩聚反应,制备得到了反渗透复合膜。研究了三羟甲基三聚氰胺,呋喃甲醇和催化剂用量,聚合反应温度以及添加剂的性质等对反渗透复合膜的影响。该复合膜在20kg/cm~2操作压力及20L/h 浓缩水回流量下,对1500ppm 的氯化钠水溶液,脱盐率为95.0%,水通量为0.27m~3/m2·d.。同时,研究了供料液浓度,温度及操作压力对复合膜性能的影响,还考查了反渗透复合膜长期运转的稳定性。  相似文献   

3.
本文采用异氰酸苯酯与醋酸纤维素的部分残余羟基反应制得改性醋酸纤维素,并对其进行红外光谱(IR)、差热分析(DSC)测定;研究了异氰酸苯酯的浓度与膜性能之间的关系及膜的耐压密性。结果表明:在17公斤/厘米~2操作压力,以1000ppmNacl 水溶液为进料液,改性膜的脱盐率达93.5%比未改性膜的脱盐率高(82.0%);而水通量(11.8Gfd)则比后者(14.3Gfd)稍低;此外,膜的耐压密性得到改善。  相似文献   

4.
为了高效生产淡水,同时开发新型膜材料的应用前景,采用PTFE双向拉伸微孔膜搭建真空蒸馏系统,并对NaCl溶液的脱盐性能进行了研究。设计正交实验,过程中保持膜下游恒定的绝对压力9 kPa, 考察了盐浓度0~80 g/L的溶液在进料温度20~60 ℃、进料流量40~160 L/h条件下,该种膜的真空膜蒸馏脱盐性能。实验结果表明,温度变化对膜通量影响最为显著且脱盐率略有变化,随浓度升高膜通量逐渐下降但脱盐率上升,流量增加能一定程度上提高膜通量但对脱盐率没有影响,其中40 g/L的盐溶液在进料流量120 L/h条件下,当进料温度为60 ℃时,膜通量达到18.4 kg/(m2·h)。在各种不同操作条件下产水电导率均小于5 μs/cm,计算脱盐率均超过99.9%,脱盐效果稳定。对真空膜蒸馏脱盐传质过程进行了分析,通过实验结果拟合了该膜的传质系数,发现其随温度线性增加,得出温度是影响膜传质系数的决定性因素,也说明了温度对膜通量的决定性影响。进行极差分析,得到温度是该过程的主要影响因素。进行重复试验证明该膜在实验过程中保持运行稳定,对于浓度低于80 g/L的盐溶液能有效避免膜污染问题。  相似文献   

5.
依据反渗透复合膜表层材料聚集态类液晶结构设想,采用表面聚合反映方式研制出一种新的反渗透复合膜。研究了该膜的制备条件,分析在不同进水盐浓度及揉作压力下的膜分离性能。在2.8MPa 操作压力下该膜对天津市自来水的脱盐率达97%以上,水通量为43L/(m~2·h)以上;对高盐度苦咸水也有良好的脱盐性能。  相似文献   

6.
采用自主搭建的PTFE多效膜蒸馏装置对电镀反渗透浓水进行浓缩处理,研究热料液进口温度、冷料液进口温度和料液流量等对多效膜蒸馏中的产水通量、造水比和产水指标的影响,并对电镀反渗透浓水进行深度浓缩试验。结果表明:随着热料液进口温度的增加,产水通量和造水比均增大;随着冷料液进口温度的增加和料液流量的减小,产水通量减小但造水比增大。深度浓缩实验结果表明:当电镀反渗透浓水浓缩至8倍时,产水的电导率、COD、浊度和色度分别保持在50μs·cm-1、15mg·L-1、2NTU和15倍以下,脱盐率、CODCr、浊度和色度的去除率均保持在99%以上,均达到国家污水综合排放二级标准。  相似文献   

7.
利用热浸渍法和打磨法引入晶种合成NaA分子筛膜,将合成的NaA分子筛膜应用于乙醇/水混合体系,研究进料温度、进料侧压力及进料流量等对其分离性能的影响。结果表明,进料温度升高,渗透通量和分离因数呈增大趋势;进料侧压力增大,渗透通量增加,分离因数减小;进料流量增大,渗透通量明显增大,分离因数未发生明显变化。进料温度为75℃、进料侧压力为100kPa、相对真空度接近-0.1MPa、进料流量为16L/h时,所得NaA分子筛膜的渗透通量和分离因数分别为1.08kg.m-2.h-1和3 338,此时用于乙醇/水混合体系分离效果最佳。NaA分子筛膜的重复性高达80%。  相似文献   

8.
以聚砜超滤膜为基膜,采用溶剂蒸发法制备聚苯醚/聚砜复合膜.用红外光谱(FT-IR)表征复合膜的制备效果,通过扫描电镜(SEM)观察其断面形貌;研究了聚苯醚(PPO)含量、进料液乙醇含量及进料液温度对复合膜渗透汽化分离性能的影响.结果表明,随铸膜液中PPO质量分数的增大,复合膜的分离因子增大,渗透通量减小;随进料液中乙醇质量分数的增大,复合膜的分离因子减小,而渗透通量增大;随进料液温度的升高,复合膜的分离因子及渗透通量均增大.对铸膜液中PPO质量分数为14%的复合膜,在进料液乙醇含量10%、进料液温度60℃时,膜的渗透通量157.2 g/(m2.h),膜对乙醇的选择系数为15.6.  相似文献   

9.
为了研发和实用化PA正渗透系统,本文通过在线实时监测研究了一种新型聚酰胺(PA)正渗透膜的活性层在朝向料液(Active Layer-facing-Feed Solution ,AL-FS)和汲取液(Active Layer -facing-Draw Solution ,Al-DS)两种模式下的正渗透水通量、反向溶质通量、特性反向通量和脱盐率等四大因素及其变化规律。结果表明:在汲取液浓度较低时,两种模式下的水通量、反向溶质通量大致相当;在汲取液浓度较高时,AL-DS模式的水通量要高于AL-FS模式的水通量,同时,AL-DS模式的反向溶质通量大约是AL-FS模式的反向溶质通量的两倍;在AL-FS模式下的特性反向溶质通量略低于AL-DS模式下的特性反向溶质通量;AL-FS模式下的脱盐率略高于AL-DS模式下的脱盐率。  相似文献   

10.
以六支膜单段串联反渗透系统为研究对象,总结了膜污染对膜元件性能影响的主要特征,并结合膜污染的实际特点,分析了膜元件污染对反渗透系统运行性能参数的影响,分别指出了膜压降、膜通量、脱盐率3项元件性能指标变化对反渗透膜系统性能指标的作用。为相关实际工程问题的解决提供了一定的参考依据。  相似文献   

11.
探讨了 Banach 代数中的行列式理论.给出了具有单位元的迹 Banach 代数具有行列式的充要条件.  相似文献   

12.
对近年来非织造布滤料的研究进展做了简要综述,介绍了内部结构的研究及表征、过滤性能及其影响因素、过滤过程的计算机模拟,指出进一步发展所需要解决的问题。  相似文献   

13.
<正>May 26,2014,BeijingScience is a human enterprise in the pursuit of knowledge.The scientific revolution that occurred in the 17th Century initiated the advances of modern science.The scientific knowledge system created by human beings,the tremendous productivity brought about by science,and the spirit,methodologies and norms formulated in scientific practice since the 17~(th)Century have long become essential elements of  相似文献   

14.
15.
分析了当前高师物理专业人才培养与基础教育人才需求存在的问题,结合调查情况,提出了高师物理专业在培养目标、课程设置、教学内容、教学方法及实践教学环节方面的改革措施。  相似文献   

16.
17.
单面约束系统的微分变分原理与运动方程   总被引:2,自引:0,他引:2  
研究单面约束力学系统的微分变分原理和运动方程。方法利用D'Alembert原理建立D'Alembert-Lagrange原理.Jourdain原理和Gauss原理,结果与结论得到系统的微分变分原理和带乘子的Euler-Lagrange形式,Nielsen形式和Appell形式的运动方程。  相似文献   

18.
q 是一个正整数,所谓 q-树的图是递归定义的:最小的 q-树是完全图 Kq,一个 n+1阶的 q-树是通过在 n 阶 q-树上加上一个新点并连接这点与 n 阶 q-树中任意 q 个互相邻接的点而获得,其中 n≥q.1-树我们通常称为树.在本文中,证明了对任意正整数 q,q-树是可重构的.  相似文献   

19.
采用毛细管区带电泳模式,以β-环糊精为手性选择剂分离了药物扑尔敏的光学对映体.考察了在不同背景电解质 pH 值尤其是较低 pH 值下环糊精浓度对对映体表观淌度差的影响,并研究了有机改性剂尿素在分离中的作用.  相似文献   

20.
利用层状球形夹杂在无限大基体中的局部化关系及平均应力场理论,给出了一种方法来分析含 n 种层状球形夹杂所构成复合材料的弹性模量.对于文献给出的空心玻璃球和高分子基构成的复合材料,该理论的预测与实验吻合很好.当表层稍失时,该理论退化为传统的 Mori-Tanaka平均应力场理论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号