首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.  相似文献   

2.
以硫化镍精矿为原料,采用共沉淀–煅烧法成功制备出Cu掺杂尖晶石铁氧体(Ni, Mg, Cu)Fe2O4异相类Fenton催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)及X射线光电子能谱(XPS)等手段系统研究了Cu掺杂量对所制备产物微观结构、形貌及催化性能的影响;确立了最优催化体系为光助类Fenton催化体系“(Ni, Mg, Cu)Fe2O4催化剂/H2O2/可见光”,揭示了Cu掺杂对(Mg, Ni)Fe2O4催化活性的增强机制。结果表明:在选定的实验条件下,制备得到的产物均为纯相立方尖晶石铁氧体。当Ni与Cu摩尔比为1∶1时,合成的(Ni, Mg, Cu)Fe2O4在可见光照180 min条件下对质量浓度为10 mg?L?1的罗丹明B(RhB)溶液的降解率可达94.5%。究其主要原因为:随着Cu掺杂量的增加,占据(Ni, Mg, Cu)Fe2O4八面体位的Fe3+和Cu2+的相对含量增加,即裸露于铁氧体表面的Fe3+和Cu2+数量增多,以及两者的协同作用,加速了羟基自由基(·OH)反应的发生,最终使得RhB溶液的降解效率从73.1%提高至94.5%。   相似文献   

3.
High affinity iron uptake in Saccharomyces cerevisiae requires Fet3p. Fet3p is proposed to facilitate iron uptake by catalyzing the oxidation of Fe(II) to Fe(III) by O2; in this model, Fe(III) is the substrate for the iron permease, encoded by FTR1. Here, a recombinant Fet3p has been produced in yeast that, lacking the C-terminal membrane-spanning domain, is secreted directly into the growth medium. Solutions of this Fet3p at >1 mg/ml have the characteristic blue color of a type 1 Cu(II)-containing protein, consistent with the sequence homology that placed this protein in the class of multinuclear copper oxidases that includes ceruloplasmin. Fet3p has an intense absorption at 607 nm (epsilon = 5500 M-1 cm-1) due to this type 1 Cu(II) and a shoulder in the near UV at 330 nm (epsilon = 5000 M-1 cm-1) characteristic of a type 3 binuclear Cu(II) cluster. The EPR spectrum of this Fet3p showed the presence of one type 1 Cu(II) and one type 2 Cu(II) (A parallel = 91 and 190 x 10(-4) cm-1, respectively). Copper analysis showed this protein to have 3.85 g atom copper/mol, consistent with the presence of one each of the three types of Cu(II) sites found in multinuclear copper oxidases. N-terminal analysis demonstrated that cleavage of a signal peptide occurred after Ala-21 in the primary translation product. Mass spectral and carbohydrate analysis of the protein following Endo H treatment indicated that the preparation was still 15% (w/w) carbohydrate, probably O-linked. Kinetic analysis of the in vitro ferroxidase reaction catalyzed by this soluble Fet3p yielded precise kinetic constants. The Km values for Fe(II) and O2 were 4.8 and 1.3 microM, respectively, while kcat values for Fe(II) and O2 turnover were 9.5 and 2.3 min-1, consistent with an Fe(II):O2 reaction stoichiometry of 4:1.  相似文献   

4.
UV differential spectroscopy is applied to study the interaction of Cu2+, Ni2+, Mn2+ ions with deoxyribonucleotides of canonic bases (dGMP, dAMP, dCMP, dTMP) and native DNA. Heteroatoms of the bases, coordinating ions, and binding constants which characterize the formation of metal complexes are found. The affinity of the ions is lower for the deoxyribonucleotide bases than for the ribonucleotide ones. This indicates that 02' of ribose participates in the stabilization of the metal complex even under conditions close to the neutral one (pH 6). Unlike the Cu2+ ions, Ni2+ and Mn2+ ions do not interact with N3C both in monomers and polymers. This seems to be the main factor explaining why copper makes DNA transform into a structure with a quasi-Hoogsteen pairing of GC pairs. No transformations of this kind of helix-coil transitions are caused by manganese and nickel up to concentrations 4 X 10(-2) M.  相似文献   

5.
1. The ability of 2-amino-4-methylpyridine to inhibit the catalytic activity of the inducible NO synthase (NOS II) enzyme was characterized in vitro and in vivo. 2. In vitro, 2-amino-4-methylpyridine inhibited NOS II activity derived from mouse RAW 264.7 cells with an IC50 of 6 nM. Enzyme kinetic studies indicated that inhibition is competitive with respect to arginine. 2-Amino-4-methylpyridine was less potent on human recombinant NOS II (IC50 = 40 nM) and was still less potent on human recombinant NOS I and NOS III (IC50 = 100 nM). NG-monomethyl-L-arginine (L-NMMA), N6-iminoethyl-L-lysine (L-NIL) and aminoguanidine were much weaker inhibitors of murine NOS II than 2-amino-4-methylpyridine but, unlike 2-amino-4-methylpyridine, retained similar activity on human recombinant NOS II. L-NMMA inhibited all three NOS isoforms with similar potency (IC50S 3-7 microM). In contrast, compared to activity on human recombinant NOS III, L-NIL displayed 10 x selectivity for murine NOS II and 11 x selectivity for human recombinant NOS II while aminoguanidine displayed 7.3 x selectivity for murine NOS II and 3.7 x selectivity for human recombinant NOS II. 3. Mouse RAW 264.7 macrophages produced high levels of nitrite when cultured overnight in the presence of lipopolysaccharide (LPS) and interferon-gamma. Addition of 2-amino-4-methylpyridine at the same time as the LPS and IFN-gamma, dose-dependently reduced the levels of nitrite (IC50 = 1.5 microM) without affecting the induction of NOS II protein. Increasing the extracellular concentration of arginine decreased the potency of 2-amino-4-methylpyridine but at concentrations up to 10 microM, 2-amino-4-methylpyridine did not inhibit the uptake of [3H]-arginine into the cell. Addition of 2-amino-4-methylpyridine after the enzyme was induced also dose-dependently inhibited nitrite production. Together, these data suggest that 2-amino-4-methylpyridine reduces cellular production of NO by competitive inhibition of the catalytic activity of NOS II, in agreement with results obtained from in vitro enzyme kinetic studies. 4. When infused i.v. in conscious unrestrained rats, 2-amino-4-methylpyridine inhibited the rise in plasma nitrate produced in response to intraperitoneal injection of LPS (ID50 = 0.009 mg kg-1 min-1). Larger doses of 2-amino-4-methylpyridine were required to raise mean arterial pressure in untreated conscious rats (ED50 = 0.060 mg kg-1 min-1) indicating 6.9 x selectivity for NOS II over NOS III in vivo. Under the same conditions, L-NMMA was nonselective while L-NIL and aminoguanidine displayed 5.2 x and 8.6 x selectivity respectively. All of these compounds caused significant increases in mean arterial pressure at doses above the ID50 for inhibition of NOS II activity in vivo. 5. 2-Amino-4-methylpyridine also inhibited LPS-induced elevation in plasma nitrate after either subcutaneous (ID50 = 0.3 mg kg-1) or oral (ID50 = 20.8 mg kg-1) administration. 6. These data indicate that 2-amino-4-methylpyridine is a potent inhibitor of NOS II activity in vitro and in vivo with a similar degree of isozyme selectivity to that of L-NIL and aminoguanidine in rodents.  相似文献   

6.
The P2X7 receptor is a uniquely bifunctional molecule through which ATP can open a small cationic channel typical of ionotropic receptors and also induce a large pore permeable to high molecular weight molecules (> 600 Da). Activation of this large pore can lead to cell lysis within 1-2 min. We asked whether pharmacological differences existed between the cationic channel and the cell permeabilizing pore by measuring whole-cell currents and uptake of a propidium dye (YO-PRO; Mw 629) in HEK293 cells stably expressing the rat P2X7 receptor, and comparing the actions of divalent cations and protons in these two assays. Currents in response to 2'-3'-(O)-(4-benzoyl benzoyl) ATP (BzATP, 30 microM) were inhibited by extracellular calcium, magnesium, zinc, copper and protons with half-maximal inhibitory concentrations (IC50) of 2.9 mM, 0.5 mM, 11 microM, 0.5 microM and 0.4 microM, respectively. The inhibition was voltage independent in each case. YO-PRO uptake induced by BzATP was also inhibited with similar IC50 values. The rank order of potency of a range of divalents was Cu2+ > Cd2+ = Zn2+ > Ni2+ > Mg2+ = Co2+ > Mn2+ > Ca2+ = Ba2+ > Sr2+. These results suggest that these divalent cations and protons all act primarily as allosteric modulators to alter the affinity of ATP binding to the P2X7 receptor. In contrast, extracellular (but not intracellular) calmidazolium inhibited the BzATP-evoked current by up to 90% (IC50 = 15 nM) but had no effect on YO-PRO uptake. Thus, calmidazolium can block activation of the ionic channel but this does not prevent the formation of the large permeabilizing pore.  相似文献   

7.
Temperature-labile cholesterol ester hydrolase (TLCEH) was purified 2,000-fold from rat testis cytosol using sequential ammonium sulfate precipitation, cation exchange chromatography, and isoelectric focusing chromatography. the purified enzyme, which exhibited a single silver-stained band (66 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was inhibited 89% by the elevation of the temperature from 32 to 37 degrees C and 65% by treatment with alkaline phosphatase. Its amino acid composition and amino-terminal sequence differed markedly from those of isoenzymes from other tissues, although 6 of 20 residues were conserved. Polyclonal antibodies raised to TLCEH exhibited no cross-immunoreactivity with cytosolic proteins from other rat tissues and inhibited 70% of testis cytosolic CEH. Western blot analysis demonstrated a high correlation between immunoreactive protein and catalytic activity in the testis during maturation of the rat, with a marked increase at the onset of spermatogenesis. TLCEH was inhibited by physiological levels of Cu2+ (I50 = 0.60 microM) and Zn2+ (I50 = 0.75 microM) and by Cd2+ (I50 = 0.15 microM) but not by 0.5-5 mM Mn2+.  相似文献   

8.
The structure and stability of cytochrome b5 reconstituted with manganese protoporphyrin IX instead of iron protoporphyrin IX has been investigated by resonance Raman spectroscopy and stopped-flow visible spectroscopy. The resonance Raman spectrum of MnIII cytochrome b5 was consistent with a high-spin hexacoordinate MnIII protoporphyrin IX structure that converted to a high-spin pentacoordinate structure at higher laser power. The resonance Raman spectrum of MnII cytochrome b5 indicated a high-spin pentacoordinate structure which was independent of laser power. Studies of the binding of MnIII protoporphyrin IX to apocytochrome b5 indicated that the MnIII-containing porphyrin bound much less tightly to the protein than did heme. Although the second-order rate constant at 20 degrees C for the association of heme with apocytochrome b5 (4.5 x 10(7) M(-1) s(-1)) was estimated to be only 1 order of magnitude higher than that with Mn protoporphyrin IX (3.3 x 10(6) M(-1) s(-1)), the dissociation of manganese substituted cytochrome b5 into the apoprotein and free Mn protoporphyrin IX occurs with a first-order rate constant of 1.2 x 10(-2) s(-1) at 20 degrees C while the dissociation of heme from cytochrome b5 at room temperature occurs 3 orders of magnitude more slowly with a first-order rate constant of 1.67 x 10(-5) s(-1) [Vergeres, G., Chen, D. Y., Wu, F.F., & Waskell, L. (1993) Arch. Biochem. Biophys. 305, 231-241]. The equilibrium dissociation constant for manganese-substituted cytochrome b5 increased with temperature from 4 nM at 20 degrees C to 14 nM at 37 degrees C. These results suggest that, in the reconstituted cytochrome P450 metabolizing system, especially in studies done with low protein concentrations (0.1 microM), and at elevated temperatures (37 degrees C), as much as 30% of the manganese-substituted cytochrome b5 may dissociate to free Mn-protoporphyrin IX and apocytochrome b5.  相似文献   

9.
Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mM triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n1 = 3.7 +/- 0.4, Kd(1) = 4 +/- 1 microM (type 1) and n2 = 5.2 +/- 0.4, Kd(2) = 460 +/- 130 microM (type 2). The high-affinity type 1 sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme:13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent Kd approximately 10 microM is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n1 = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to > 8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These measurements indicate that, over this NaCl concentration range, hammerhead ribozyme activity is influenced by population of a specific set of divalent cation sites.  相似文献   

10.
Arginase is a thermostable (Tm = 75 degrees C) binuclear manganese metalloenzyme which hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of native metal-depleted arginase, metal-loaded H101N arginase, and metal-depleted H101N arginase have been determined by X-ray crystallographic methods to probe the roles of the manganese ion in site A (Mn2+A) and its ligand H101 in catalysis and thermostability. We correlate these structures with thermal stability and catalytic activity measurements reported here and elsewhere [Cavalli, R. C., Burke, C. J., Kawamoto, S., Soprano, D. R., and Ash, D. E. (1994) Biochemistry 33, 10652-10657]. We conclude that the substitution of a wild-type histidine ligand to Mn2+A compromises metal binding, which in turn compromises protein thermostability and catalytic function. Therefore, a fully occupied binuclear manganese metal cluster is required for optimal catalysis and thermostability.  相似文献   

11.
1. In A7r5 cells loaded with the Ca2+ indicator fura-2, we examined the effect of a Ca2+ channel blocker SK&F 96365 on increases in intracellular free Ca2+ concentrations ([Ca2+]i) and Mn2+ quenching of fura-2 fluorescence by endothelin-1 (ET-1). Whole-cell patch-clamp was also performed. 2. Higher concentrations (> or = 10 nM) of ET-1 (higher [ET-1]) evoked a transient peak and a subsequent sustained elevation in [Ca2+]i: removal of extracellular Ca2+ abolished only the latter. A blocker of L-type voltage-operated Ca2+ channel (VOC) nifedipine at 1 microM reduced the sustained phase to about 50%, which was partially sensitive to SK&F 96365 (30 microM). 3. Lower [ET-1] (< or = 1 nM) evoked only a sustained elevation in [Ca2+]i which depends on extracellular Ca2+. The elevation was partly sensitive to nifedipine but not SK&F 96365. 4. In the presence of 1 microM nifedipine, higher [ET-1] increased the rate of Mn2+ quenching but lower [ET-1] had little effect. 5. In whole-cell recordings, both lower and higher [ET-1] induced inward currents at a holding potential of -60 mV with linear I-V relationships and reversal potentials close to 0 mV. The current at lower [ET-1] was resistant to SK&F 96365 but was abolished by replacement of Ca2+ in the bath solution with Mn2+. The current at higher [ET-1] was abolished by the replacement plus SK&F 96365. 6. In a bath solution containing only Ca2+ as a movable cation, ET-1 evoked currents: the current at lower [ET-1] was sensitive to Mn2+, whereas that at higher [ET-1] was partly sensitive to SK&F 96365. 7. These results indicate that in addition to VOC, ET-1 activates two types of Ca2+-permeable nonselective cation channel depending on its concentrations which differ in terms of sensitivity to SK&F 96365 and permeability to Mn2+.  相似文献   

12.
Copper and cobalt oxides supported on CeO_2 were investigated for preferential oxidation of carbon monoxide(CO-PROX) in the presence of excess hydrogen and CO_2.(Cuo)_(1-x)(Co_3 O_4)_(x/3)-(CeO_2)_(2.5)(x=0,0.25,0.50,0.75,0.85 and 1) catalysts were prepared by coprecipitation method.These mixed oxide catalysts were characterized by several physicochemical techniques,such as BET surface area(S_(BET)),X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),temperature programmed reduction(TPR) and X-ray photoelectron spectroscopy(XPS).XRD studies show the peaks related to CuO and Co_3 O_4 phases in copper and cobalt containing CeO_2 catalysts.The average particle size of the CeO_2 crystallites is in the range of 8-10 nm as evaluated from HRTEM studies.XPS studies demonstrate that Cu,Co and Ce in(cuO)_(1-x)(Co_3O_4)_(x/3)-(CeO_2)_(2.5) catalysts are presented in+2 and +1,+3 and +2 and +4 and +3 oxidation states,respectively.The catalyst with x=0.75 shows better activity and selectivity towards CO-PROX.Though the catalyst with only copper(CuO-CeO_2,x=0) shows good activity but reverse water gas shift(RWGS) reaction is noticed at high temperature.On the other hand,RWGS reaction is suppressed on the cobalt containing CuO-ceO_2 catalyst.Cobalt on CeO_2 with x=1 shows hardly any activity for PRoX reaction at low temperatures.No methanation activity is observed on CuO-CeO_2 or Co_3O_4-CeO_2 catalysts.In contrast,combination of copper and cobalt on CeO_2 shows methanation of CO where enhanced activity is observed with increasing in cobalt content.  相似文献   

13.
It was shown recently [Goussias, C., Ioannidis, N., and Petrouleas, V. (1997) Biochemistry 36, 9261-9266] that incubation of photosystem II preparations with NO at -30 degrees C in the dark results in the formation of a new intermediate of the water-oxidizing complex. This is characterized by an EPR signal centered at g = 2 with prominent manganese hyperfine structure. We have examined the detailed structure of the signal using difference EPR spectroscopy. This is facilitated by the observations that NO can be completely removed without decrease or modification of the signal, and illumination at 0 degree C eliminates the signal. The signal spans 1600 G and is characterized by sharp hyperfine structure. 14NO and 15NO cw EPR combined with pulsed ENDOR and ESEEM studies show no detectable contributions of the nitrogen nucleus to the spectrum. The spectrum bears similarities to the experimental spectrum of the Mn(II)-Mn(III) catalase [Zheng, M., Khangulov, S. V., Dismukes, G. C., and Barynin, V. V. (1994) Inorg. Chem. 33, 382-387]. Simulations allowing small variations in the catalase-tensor values result in an almost accurate reproduction of the NO-induced signal. This presents strong evidence for the assignment of the latter to a magnetically isolated Mn(II)-Mn(III) dimer. Since the starting oxidation states of Mn are higher than II, we deduce that NO acts effectively as a reductant, e.g., Mn(III)-Mn(III) + NO--> Mn(II)-Mn(III) + NO+. The temperature dependence of the nonsaturated EPR-signal intensity in the range 2-20 K indicates that the signal results from a ground state. The cw microwave power saturation data in the range 4-8 K can be interpreted assuming an Orbach relaxation mechanism with an excited state at delta = 42 K. Assuming antiferromagnetic coupling, -2JS1.S2, between the two manganese ions, J is estimated to be 10 cm-1. The finding that an EPR signal from the Mn cluster of PSII can be clearly assigned to a magnetically isolated Mn(II)-Mn(III) dimer bears important consequences in interpreting the structure of the Mn cluster. Although the signal is not currently assigned to a particular S state, it arises from a state lower than S1, possibly lower than S0, too.  相似文献   

14.
By application of microsecond light flashes the oxygen-evolving complex (OEC) was driven through its functional cycle, the S-state cycle. The S-state population distribution obtained by the application of n flashes (n = 0. 6) was determined by analysis of EPR spectra; Mn K-edge X-ray absorption spectra were collected. Taking into consideration the likely statistical error in the data and the variability stemming from the use of three different approaches for the determination of edge positions, we obtained an upshift of the edge position by 0.8-1.5, 0.5-0.9, and 0.6-1.3 eV for the S0-S1, S1-S2, and S2-S3 transitions, respectively, and a downshift by 2.3-3.1 eV for the S3-S0 transition. These results are highly suggestive of Mn oxidation state changes for all four S-state transitions. In the S0-state spectrum, a clearly resolved shoulder in the X-ray spectrum around 6555 eV points toward the presence of Mn(II). We propose that photosynthetic oxygen evolution involves cycling of the photosystem II manganese complex through four distinct oxidation states of this tetranuclear complex: Mn(II)-Mn(III)-Mn(IV)2 in the S0-state, Mn(III)2-Mn(IV)2 in the S1-state, Mn(III)1-Mn(IV)3 in the S2-state, and Mn(IV)4 in the S3-state.  相似文献   

15.
Factor VIII, a divalent metal ion-dependent heterodimer, contains a single copper atom, but the role of this metal in the structure and function of the cofactor is unclear. Earlier results showed that the dissociated heavy and light chains of factor VIII could be recombined in the presence of Ca(II) or Mn(II) but not Cu(II) to yield functional protein [Fay, P. J. (1988) Arch. Biochem. Biophys. 262, 525-531]. Inclusion of Cu(I) or Cu(II) inhibited the Mn(II)- or Ca(II)-dependent reconstitution of factor VIII with an IC50 approximately 10 micro M. The heavy chain was the susceptible subunit with inhibition by copper ion resulting from its reduced affinity for light chain. On the other hand, Mn(II)-dependent factor VIII reconstitutions performed with Cu(II) light chain and native heavy chain occurred at an accelerated rate (approximately 10-fold) and yielded an enhanced activity ( approximately 50%), likely reflecting an increased specific activity of the heterodimer. Cu ions enhanced the activity of EDTA-treated factor VIII in the presence of Ca(II) but not in its absence, suggesting that EDTA-treated factor VIII is not equivalent to separated subunits and that copper ions are auxiliary to ions that mediate reconstitution. Conformational analyses showed that the ellipticities and extrinsic fluorescence of both subunits were differentially affected by Cu(II) and Mn(II). These structural effects were fully reversed by EDTA. The metal ions had little if any effect on the conformation of intact factor VIII or the A1/A3-C1-C2 dimer. Mn(II) and Cu(II) stabilized the factor VIII light chain, and the latter stabilized the A1 subunit derived from the heavy chain, yielding similar thermal denaturation profiles that were distinct from that observed for the Ca(II)-stabilized subunits. Thus both subunits of factor VIII bind copper ions, and the effects of this binding differ from the interactions observed with Ca(II) or Mn(II). These data support a model where copper in factor VIII likely functions to increase specific activity of the heterodimer rather than directly mediating the intersubunit interaction.  相似文献   

16.
The stability of Mn(II) binding to manganese peroxidase (MnP) has been studied as a function of pH by spectrophotometric and potentiometric titrations. The sensitivity of the potentiometric titrations allows collection of data that are consistent with a high-affinity and a low-affinity Mn(II) binding site on the peroxidase. The two sites differ in affinity by 4 to 900-fold between pH 4 and 6.5. The stability of Mn(II) binding to the high-affinity site increases with increasing pH, while the stability of Mn(II) binding to the low-affinity site decreases with increasing pH. Interestingly, at pH values above 5.0, the high-affinity site appears to be partially unavailable for binding Mn(II). A pH-dependent structural change in the Mn(II) binding site is proposed to account for this partial inactivation at elevated pH.  相似文献   

17.
Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.  相似文献   

18.
Trichosporin (TS) -B-VIa, a fungal alpha-aminoisobutyric acid (Aib) -containing peptide consisting of 19 amino acid residues and a phenylalaninol, produced both 45Ca2+ influx into bovine adrenal chromaffin cells and catecholamine secretion from the cells. The secretion induced by TS-B-VIa at lower concentrations (2-5 microM) was completely dependent on the external Ca2+, while that induced by TS-B-VIa at higher concentrations (10-30 microM) was partly independent of the Ca2+. The concentration-response curves (2-5 microM) for the TS-B-VIa-induced Ca2+ influx and secretion correlated well. The TS-B-VIa (at 5 microM) -induced secretion was not antagonized by diltiazem, a blocker of L-type voltage-sensitive Ca2+ channels. The treatment of fura-2-loaded C6 glioma cells with TS-B-VIa (2-5 microM) led to an increase in the intracellular free Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner but the stimulatory effects of TS-B-VIa on [Ca2+]i were only slightly observed in Ca(2+)-free medium, indicating that TS-B-VIa causes Ca2+ influx from the external medium into the C6 cells. The TS-B-VIa-induced increase in [Ca2+]i in the C6 cells was not antagonized by diltiazem and by SK&F 96365, a novel blocker of receptor-mediated Ca2+ entry. High K+ increased neither [Ca2+]1 in the C6 cells nor Mn2+ influx into the cells, while TS-B-VIa increased Mn2+ influx. Also in other non-excitable cells, bovine platelets, similar results were obtained. These results strongly suggest that the mechanism of Ca2+ influx by TS-B-VIa at the lower concentrations is distinct from the event of Ca2+ influx through receptor-operated or L-type voltage-sensitive Ca2+ channels in both excitable cells (the chrornaffin cells) and non-excitable cells (the C6 cells and the platelets) and that TS-B-VIa per se may form Ca(2+)-permeable ion channels in biological membranes. On the other hand, the peptide at the higher concentrations seems to damage cell membranes.  相似文献   

19.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

20.
用非磁性Ga3+部分替代Sr2MnMoO6中的Mn2+,获得Sr2Mn1-xGaxMoO6(x=0,0.1,0.2,0.3)多晶样品,通过X射线衍射(XRD)分析和磁性能测量研究Ga3+对晶体结构和磁性的影响。XRD谱Rietveld结构精修分析表明,Sr2Ga1-xMnxMoO6具有四方对称晶体结构(空间群I4/m)。随着Ga含量增加,B/B-原子占位有序度降低,平均键长减小,而平均键长增大,平均键角保持180o不变,平均键角逐渐扩张。5 K及300 K温度下,样品均为反铁磁体,但低掺杂样品在低温(5 K)下表现出微弱的铁磁性。上述结果表明,Ga3+对Mn2+的电子掺杂引起部分Mo离子价态由+6价转变为+5价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号