首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为降低陶瓷膜支撑体的制作成本,以SiC颗粒为骨料,分别以α-Al_2O_3微粉、ρ-Al_2O_3微粉以及Al(OH)3粉作为莫来石相的铝源,利用烧结过程中Si C微粉表面氧化产生的SiO2作为硅源,以木炭粉为造孔剂,碱式碳酸镁作为助烧结剂,于1 350℃保温3 h在空气气氛下无压烧结制备原位莫来石结合SiC多孔陶瓷膜支撑体试样,并研究了三种不同含铝微粉对试样性能的影响。结果表明:经1 350℃烧后,采用活性ρ-Al_2O_3微粉结合的试样抗折强度达到19. 9 MPa,分别高于采用α-Al_2O_3和Al(OH)3结合试样的51. 1%和33. 5%。SEM及XRD分析表明,添加活性ρ-Al_2O_3微粉的试样内部颗粒之间的颈部结合程度最好,原位生成的莫来石相最多。  相似文献   

2.
为制备高透气性SiC陶瓷支撑体,以d_(50)=100μm的SiC细粉和d_(50)=2. 5μm的SiC微粉为主要原料,添加聚甲基丙烯酸甲酯为造孔剂,采用机压成型在2 300℃下(Ar保护)烧结2 h制备了重结晶SiC陶瓷试样。研究了SiC微粉含量(质量分数分别为30%、40%、50%、60%、70%和100%)和造孔剂含量(质量分数分别为0、3%、6%)对试样显气孔率、透气度、抗折强度等性能的影响,分析了试样的物相组成和显微结构。结果表明:随着Si C微粉含量的增加,试样的显气孔率不断增加,透气度先增加后减小。造孔剂的加入会导致试样抗折强度衰减严重。当SiC微粉含量(w)为60%且不添加造孔剂时,试样的透气度为40. 23×10~(-12)m~2,显气孔率为34. 5%,常温抗折强度为35. 8 MPa,高温抗折强度为41. 7 MPa。该多孔陶瓷具有连通的孔结构,平均孔径为19. 3μm,孔径分布较窄,适合用作陶瓷支撑体。  相似文献   

3.
为了改善Al_2O_3-ZrO_2材料的烧结性能和力学性能,在Al_2O_3-ZrO_2材料配料中添加不同量(质量分数分别为0、0. 25%、0. 5%、0. 75%、1%和1. 25%)的纳米MgO,经成型、干燥、1 550℃保温3 h烧后,检测试样的烧后线变化率以及烧后试样的体积密度、显气孔率、吸水率、常温耐压强度、常温抗折强度和高温抗折强度,并进行XRD和SEM分析。结果表明:1)添加纳米MgO可促进Al_2O_3-ZrO_2材料的烧结致密化,并改善其力学性能。当纳米MgO添加量为1%(w)时,Al_2O_3-ZrO_2材料的综合性能较佳,试样的体积密度、显气孔率、吸水率和线收缩率分别为3. 34 g·cm-3、18. 7%、5. 9%和7. 6%,常温耐压强度、常温抗折强度和高温抗折强度分别为251、81. 0和24. 0 MPa。2)纳米MgO对Al_2O_3-ZrO_2材料烧结致密化和力学性能的提高归因于MgO和ZrO_2形成有限固溶体时于ZrO_2晶体中引入的缺陷促进了Zr~(4+)的扩散速率,以及亚稳态t-ZrO2发生应力诱导相变时对基体材料产生的强化作用。  相似文献   

4.
陶瓷膜分离技术广泛应用于石油化工,食品加工,生物医学,催化过滤等领域。目前,陶瓷膜的多孔支撑体主要以氧化铝为原料。为保持较小的渗透阻力,通常使用大粒径氧化铝的,其煅烧时需要很高的温度,能耗很高,导致多孔支撑体的成本很高。为降低其制备成本,本文采用以刚玉粉(W40,平均粒径为40μm)为主要原料,以高岭土,滑石等为塑性剂和助烧剂,研究了助烧剂含量、烧结温度对多孔陶瓷支撑体的抗折强度,孔隙率以及平均孔径的影响。实验结果表明:高岭土含量的增加会导致多孔陶瓷的孔径降低和抗折强度降低;加少量的烧滑石能明显降低多孔陶瓷的烧结温度;90wt%W40粉,2wt%烧滑石,8wt%高岭土,经1510℃煅烧2h后得到的多孔陶瓷的抗折强度为153.6MPa,孔隙率为29%,平均孔径为6.6μm。所得多孔陶瓷适于用作多孔陶瓷膜支撑体。  相似文献   

5.
以粒度≤0.063mm的SiC为主要原料,分别加入30%(质量分数)的Al2O3-Y2O3与10%的Al2O3-高岭土复合助烧剂,并外加不同量(分别为12.8%、26.3%、30.0%和36.4%)的造孔剂羧甲基纤维素钠(CMC),制样后首先在空气炉中经过300℃2h或1100℃4h的预烧,然后在真空炉中于1550℃4h真空烧结而制备成SiC多孔陶瓷,并研究了助烧剂种类以及造孔剂CMC外加量对SiC多孔陶瓷显微组织、显气孔率及抗折强度的影响。结果显示:采用Al2O3-Y2O3作为助烧剂的SiC多孔陶瓷比Al2O3-高岭土作助烧剂的具有较高的抗折强度,显气孔率稍有减小;随着羧甲基纤维素钠量的增加,加入两种助烧剂的SiC多孔陶瓷均表现为显气孔率增加,抗折强度降低。  相似文献   

6.
以SiC、Si粉和Al2O3微粉为主要原料,羧甲基纤维素(CMC)为临时结合剂,采用氮化反应烧结法合成了Si3N4-SiC材料,主要研究了Si粉的粒度(≤0.074、≤0.044 mm)和加入量(质量分数分别为15%、17%、19%、21%)、烧成温度(分别为1 380、1 400、1 420、1 430、1 440、1 460和1 480℃)、Al2O3微粉添加量(质量分数分别为0、1%、2%、3%、4%,取代相应量的SiC粉)对Si3N4-SiC材料的显气孔率、体积密度、常温耐压强度、常温抗折强度、高温抗折强度及Si3N4含量的影响。结果表明:1)采用粒度较细Si粉的试样具有较高的致密度、常温强度、高温抗折强度和Si3N4含量;随着Si粉加入量的增加,试样的致密度略有增大但变化不大,常温强度和Si3N4含量逐渐增大,而高温抗折强度先增大后减小;2)适当提高烧成温度会明显改善Si3N4-SiC材料的高温抗折强度,但当温度超过1 440℃反而略有下降;3)添加Al2O3微粉对烧后试样的致密度、常温强度和高温抗折强度有益。综合来看,Si粉的适宜添加量(质量分数)为17%,较适宜的烧成温度为1 420~1 440℃,Al2O3微粉的适宜添加质量分数为2%。  相似文献   

7.
实验以黄土为原料,利用滚压成型制备黄土基陶瓷膜支撑体试样,研究了高岭土添加量和烧结温度对支撑体试样的抗折强度、纯水通量及微观形貌的影响。采用万能材料试验机、扫描电镜、实验室自制装置等仪器设备进行表征,并利用X射线粉末衍射仪、压汞仪对最佳样进行物相组成、孔径分布分析。结果表明:高岭土添加量为4%、烧结温度为1120℃时,烧结得到的黄土基支撑体的性能最佳,此时支撑体的抗折强度为67 MPa,纯水通量为1465 L/(m~2·h·bar),中值孔径为3568.40 nm,主峰孔径分布范围为1416.59~5532.03 nm,孔隙率为16.67%,微观结构良好,物相组成中莫来石和石英含量较高。  相似文献   

8.
为了制备密度小、高温性能优异的刚玉-莫来石多孔陶瓷,在以莫来石细粉、板状刚玉细粉、α-Al_2O_3微粉、SiO_2微粉为主要原料,硅溶胶和ρ-Al_2O_3为结合剂配制的浆料中,分别添加占浆料体积10%、30%和50%的聚苯乙烯泡沫球为造孔剂,采用振动浇注成型,在1 500℃烧后制备了刚玉-莫来石多孔陶瓷,并探究了聚苯乙烯泡沫球添加量对多孔陶瓷的性能、相组成以及显微结构的影响。结果表明:随着聚苯乙烯泡沫球造孔剂添加量的增加,试样的常温弯曲强度、常温压缩强度、高温抗折强度、容重、热导率均明显下降。聚苯乙烯泡沫球氧化后形成直径约为2 mm的气孔,同时基质中颗粒之间的部分烧结生成了大量的微气孔,且1 500℃热处理后试样中原位生成了大量的莫来石,使得试样在1 500℃热处理后膨胀;当聚苯乙烯泡沫球加入量为浆料总体积50%时,试样的显气孔率达到61%,1 400℃下的高温抗折强度高达2. 64 MPa,满足密度小、高温性能优异的要求。  相似文献   

9.
以d_(50)=247. 0μm的SiC颗粒为主原料,分别加入12. 5%、17. 5%、22. 5%(w)的混合溶胶(由正硅酸乙酯和铝溶胶按1∶6质量比配成),或分别加入5%、10%、15%(w)的混合微粉(由d_(50)=20. 9μm的SiC微粉和α-Al_2O_3微粉按质量比1∶2. 5配成)作为原位莫来石结合的添加剂,并外加12. 5%(w)的d_(50)=28. 1μm的木炭粉为造孔剂,采用模压成型,在1 400℃烧结3 h制备多孔SiC陶瓷膜支撑体。研究了两种添加剂对多孔陶瓷膜支撑体显气孔率、抗弯强度、孔径大小分布和透气性能的影响,并分析了试样的物相组成和断口形貌。结果表明:试样在烧结后均形成了莫来石结合相;随着溶胶添加量的增加,试样抗弯强度呈增长趋势,孔隙率逐渐减小;随着微粉添加量的增加,试样的孔隙率逐渐减小,抗弯强度呈先增大后减小的变化趋势。添加溶胶制备的莫来石结合多孔SiC支撑体具有更好的贯通气孔结构和力学性能,其中,添加17. 5%(w)溶胶的试样具有良好的力学性能和透气性能,其抗弯强度达到28. 2 MPa,孔隙率为37. 2%,平均孔径为89. 6μm,阻力降为41. 0 Pa。  相似文献   

10.
本文以氧化铝粉(44μm)为主要原料,碳化硅粉(0.3μm)作添加剂,磷酸二氢铝作为粘接剂。在300MPa的压力下将粉料模压成多孔陶瓷胚体,试样中碳化硅的添加量分别为5%、10%、15%,粘接剂的含量为6%。将试样在600℃、800℃、1000℃三个温度下烧结,保温1 h后随炉冷却,测试试样的抗折强度、孔隙率及线收缩率,分析不同烧结温度和碳化硅的添加量对多孔陶瓷的力学性能的影响。实验结果表明:随温度逐渐升高,碳化硅添加量的增多,试样的抗折强度逐渐升高,当温度为1000℃,碳化硅添加量为15%时,试样的抗折强度高达48 MPa。在三个温度下,试样的线收缩率整体变化不大,添加剂含量为5%,在600℃烧结后,线收缩仅为13%。孔隙率一方面随着温度的升高而下降,另一方面却随添加剂的含量的增加呈上升趋势。  相似文献   

11.
以光伏企业线切割硅产生的废砂浆(其w(SiC)=25%,w(Si)=60%)为主要原料,加入不同比例的SiC粉(废砂浆与SiC粉的质量比为65∶35~35∶65),加无水乙醇球磨、干燥、加PVA造粒后,以10 MPa压力(保压1 min)成型为55 mm×5 mm×5 mm的坯体,在1450℃氮气气氛中烧结制备了Si3N4结合SiC耐火材料,然后检测其常温抗折强度、显气孔率、体积密度,并进行XRD分析.结果表明:烧后试样的常温抗折强度较高,最高达50.2 MPa,但致密度较低,显气孔率在31.20%~35.64%之间;烧后试样中只有SiC和Si3N4两相,单质Si已完全氮化生成了Si3N4.  相似文献   

12.
氮化硅对注凝成型熔融石英陶瓷性能影响的研究   总被引:1,自引:0,他引:1  
以丙烯酰胺(AM)为有机单体,N,N'-亚甲基丙稀酰胺(MBAM)为交联剂,过硫酸铵(APS)为引发剂,pH=3.5,温度为1190 ℃保温5 h的条件下,采用注凝成型方法制备熔融石英陶瓷;以氮化硅为添加剂,通过XRD、SEM等分析不同氮化硅添加量对熔融石英陶瓷的影响,结果表明,氮化硅促进石英陶瓷的烧结,不会导致方石英出现;试样常温抗折强度、体积密度随氮化硅添加量的增加而增大,而显气孔率随氮化硅添加量的增加而减小.当氮化硅添加量为2%时,试样常温抗折强度为37.13 MPa,体积密度为1.96 g/cm3 ,显气孔率为10%.  相似文献   

13.
以α-Al_2O_3为骨料,选取造孔剂羧甲基纤维素、复相烧结助剂二氧化钛和氧化铜、润滑剂丙三醇四种工艺因素的加入量,设计L25(5~4)正交实验,在1200℃温度下烧结制备支撑体,从而得到最佳制备方案。通过测定每组实验所制备支撑体的孔隙率和抗折强度,得到各添加剂对孔隙率和抗折强度影响程度的主次顺序是造孔剂润滑剂复相烧结助剂。采用压汞仪、万能材料试验机、扫描电镜和实验室自制装置等实验设备对成品进行表征量的测试。结果表明:羧甲基纤维素、丙三醇、二氧化钛+氧化铜的最佳添加量分别为4%、3%和1.5%+3%,在该最佳配比下制备的支撑体孔隙率可达33%,纯水通量5107.68 L/m~2·h·MPa,抗折强度104.4 MPa,微观结构良好。  相似文献   

14.
以高纯熔融石英粉为原料,分别加入相对于熔融石英粉质量1%、2%和3%的纳米ZnO或纳米Y2O3,经50 MPa压力成型后,在还原气氛中,于1 300、1 350和1 400℃保温1 h煅烧后,测定试样的显气孔率和常温抗折强度,并采用SEM分析试样的断口形貌。结果表明:引入纳米ZnO或纳米Y2O3可以明显地促进熔融石英陶瓷的烧结,纳米ZnO可大大提高熔融石英陶瓷材料的抗折强度并显著降低其显气孔率,纳米Y2O3作为熔融石英陶瓷助烧结剂的最佳加入量(w)为2%。  相似文献   

15.
为了获得更加环保的Al2O3-Si C-C铁沟浇注料,在w(电熔棕刚玉颗粒)为60%、w(Si C颗粒和细粉)为21%、w(硅灰)为3%、w(α-Al2O3微粉)为3%、w(白刚玉微粉)为10.5%、w(Si粉)为2.5%的基础配方中,分别以质量分数为0、1%、2%、3%和4%的环保型含碳材料Carbores P等量替代白刚玉微粉,外加质量分数为7%的硅溶胶为结合剂,制成Al2O3-Si C-C浇注料,研究了Carbores P加入量对110℃干燥后及1 100和1 500℃烧后试样显气孔率、体积密度、烧后线变化率、常温耐压强度、常温抗折强度和高温抗折强度的影响。结果表明:随着Carbores P加入量的增加,干燥及烧后试样的显气孔率逐渐增大,干燥后试样的体积密度逐渐减小,1 100℃烧后试样的线膨胀率逐渐增大,干燥后试样的常温抗折强度和常温耐压强度以及1 100和1 500℃烧后试样的常温抗折强度变化均不大;1 100和1 500℃烧后试样的体积密度、1 500℃烧后试样的线膨胀率、1 100和1 500℃烧后试样的常温耐压强度、干燥后试样的高温抗折强度等均呈先增大后减小的变化趋势,均在Carbores P加入量为2%(w)时达到了最大。  相似文献   

16.
为了提高中间包干式料的烧结性能,延长工作衬的使用寿命,以粒度为5~3、3~1、1~0.2、≤0.2和≤0.074 mm的电熔镁钙砂为主要原料,酚醛树脂为结合剂,制备了镁钙质中间包干式料。研究了三聚磷酸钠加入量(质量分数分别为0、0.5%、1%、1.5%、2%)对镁钙质中间包干式料常温抗折强度、常温耐压强度、体积密度、显气孔率以及烧后线变化率的影响。结果表明:三聚磷酸钠的加入,在220℃烘烤后形成具有胶凝性磷酸盐,在1 550℃烧后生成低熔点化合物进而促进烧结。当加入量为1%(w)时,1 550℃处理后试样的常温抗折强度最大,烧后线变化率最小。  相似文献   

17.
为了利用辽宁地区丰富的镁资源制备方镁石-镁橄榄石质隔热材料,以高纯镁砂(≤3 mm)、镁橄榄石(≤1 mm)、SiO_2粉(≤0.044 mm)为主要原料,在以菱镁矿粉(≤0.074 mm)为主要造孔剂的基础上,分别添加石墨(≤0.149 mm)、炭黑(≤0.044 mm)、聚苯乙烯球(1 mm)、聚丙烯塑料颗粒(1 mm)和木屑(1~2 mm)作为造孔剂,以亚硫酸纸浆废液作为结合剂,在2 MPa压力下压制成型,在110℃保温24 h干燥后,在1 550℃保温3 h烧成,然后检测烧后试样的显气孔率、体积密度、烧后线变化率、常温耐压强度和常温抗折强度,并分析典型试样的物相组成和显微结构。结果表明:1)添加上述造孔剂后,烧后试样的显气孔率增大,体积密度、常温耐压强度和常温抗折强度均减小;试样烧成后均发生收缩,其中,添加石墨的试样的收缩率最小(0.26%),添加木屑的试样的收缩率最大(1.47%);综合比较,添加炭黑的试样的综合性能最优。2)烧后试样的主晶相为方镁石、镁橄榄石及少量的钙镁橄榄石。3)添加粒径较大(1 mm)的聚丙烯塑料颗粒的试样烧后产生了较大的气孔,并且气孔分布不均均;添加炭黑的试样在显气孔率增大的同时仍具有较高的强度。  相似文献   

18.
添加剂对超硬材料陶瓷结合剂性能的影响   总被引:1,自引:1,他引:0  
毕春磊  薛群虎  张会  李菁 《硅酸盐通报》2011,30(6):1358-1361
以金属Al粉与α-Al2O3微粉作为陶瓷结合剂的添加剂,研究其对陶瓷结合剂抗弯强度、矿物组成及气孔分布等性能的影响.结果表明:金属Al粉添加量为4wt%,在620℃下烧结时,试样抗折强度最高为29.97 MPa,较基础陶瓷结合剂试样提高了10.3%;单独添加α-Al2O3微粉能够提高结合剂的黏度,防止试样在烧成过程中产生不均匀变形,提高陶瓷结合剂的网络致密度;在680℃下烧结,试样抗折强度大幅提高,最高强度为65.46 MPa,较基础陶瓷结合剂提高了140%,并且与陶瓷结合剂发生反应生成霞石(NaAlSiO4),霞石的生成有拓宽烧结范围,抑制裂纹延伸的作用;金属Al粉与α-Al2O3微粉共同加入对陶瓷结合剂抗折强度的提高有更好的效果,在680℃下烧结,当金属Al粉添加量为2wt%,α-Al2O3微粉添加量为30wt%时,试样抗折强度最高为80.33 MPa,较基础陶瓷结合剂试样提高了195.5%;金属Al粉的加入不会影响陶瓷结合剂气孔的形成,气孔分布均匀且较多,具备容纳磨屑与携带冷却液的性能.  相似文献   

19.
沈阳  阮玉忠 《硅酸盐通报》2008,27(6):1221-1224
以铝型材厂污泥为主原料合成Al2TiO5材料,在合成的Al2TiO5中添加少量SiO2矿化剂,与Al2TiO5形成固溶体,抑制Al2TiO5的分解,达到提高Al2TiO5热稳定性的目的.采用XRD法和SEM法表征各试样的晶相结构和显微结构;用Rietveld Quantification 法确定各试样中各晶相的含量;测试各试样的性能.结构与性能分析结果表明较佳SiO2矿化剂添加量为2%,较佳烧结温度为1450 ℃,对应抗折强度为44.3 MPa,体积密度为3.28 g/cm3,气孔率为6.3%,吸水率为1.9%,热震后抗折强度保持率为84.2%.  相似文献   

20.
以板状刚玉、石墨、活性α-Al_2O_3微粉等为主要原料、金属Al粉和单质Si粉为添加剂、酚醛树脂为结合剂,在埋焦炭条件下经1 200和1 400℃热处理制备低碳Al_2O_3–C耐火材料,研究了不同温度下低碳Al_2O_3–C材料中β-Sialon相的生成及对性能的影响。结果表明:1 200℃烧成后,试样中有短柱状AlN、Si_3N_4和SiC晶须等新物相生成;1 400℃烧成后,试样中物相AlN和Si_3N_4消失,有呈晶须及片状的β-Sialon相生成,Si C晶须长径比增加。SiC和β-Sialon等新物相的原位生成,提高了1 400℃烧成后试样的性能,常温耐压强度提高30.38%,达到87.75 MPa,常温抗折强度和高温抗折强度分别提高到20.01和15.69 MPa,弹性模量和载荷位移量都提高12%以上。热震稳定性改善显著,3次热震后常温耐压强度损失仅为8.23 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号