首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以硅粉和氮化硅铁颗粒为原料,经高纯氮气气氛下烧结,制备出氮化硅/氮化硅铁复合材料。将氮化硅/氮化硅铁复合材料试样分别在1 500、1 600、1 700℃氮气气氛下重烧,探究其高温稳定性。结果表明:当重烧温度为1 500℃时试样中存在的物相有β-Si_3N_4、α-Si_3N_4、Si_2N_2O、SiC以及Fe3Si;当重烧温度达到1 600℃时,β-Si_3N_4含量增加,Fe_3Si、Fe_5Si_3、FeSi_3种硅铁合金共存,α-Si_3N_4、Si_2N_2O消失;当重烧温度上升到1 700℃时,β-Si_3N_4含量显著下降并重新出现α-Si_3N_4,Fe_5Si_3和FeSi相共存,Fe_3Si相消失。结合热力学计算推断反应机理为:当重烧温度从1 500℃上升到1 600℃时,α-Si_3N_4、Fe–Si熔体中的Si以及Si_2N_2O均向β-Si_3N_4转变,导致β-Si_3N_4含量增加。当重烧温度上升到1 700℃过程中,熔融硅铁的存在加速了Si_3N_4的分解,导致β-Si_3N_4含量减少;试样冷却过程中,Si(l)、Si(g)将重新氮化形成氮化硅,使α-Si_3N_4重新出现。SiC在较高的温度下比Si_3N_4稳定,其反应的C源为结合剂中的残C,以及气氛中的CO。随温度升高,复合材料中Fe–Si合金的稳定顺序依次为:Fe3Si→Fe_5Si_3→FeSi。  相似文献   

2.
以α-Si_3N_4粉和黑刚玉为原料、Gd_2O_3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si_3N_4复相陶瓷材料,研究了Gd_2O_3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd_2O_3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si_3N_4、β-Si_3N_4和O’-Sialon,添加Gd_2O_3一方面可在高温烧结过程中形成液相,促进α-Si_3N_4的"溶解–析出"过程,有利于α-Si_3N_4向β-Si_3N_4的晶型转变以及β-Si_3N_4晶粒的生长;另一方面可促进α-Si_3N_4与Al_2O_3和Si O_2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd_2O_3添加量为6%(质量分数)时,经1 600℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g·cm~(–3);抗折强度达到105.57 MPa。  相似文献   

3.
添加Al_2O_3-Y_2O_3烧结助剂的无压烧结Si_3N_4的研究   总被引:6,自引:0,他引:6  
本文研究了 1740~1780℃范围内以Al_2O_3-Y_2O_3 为烧结助剂的 Si_3N_4 的无压烧结性能。结果表明:加少量Al_2O_3-Y_2O_3的Si_3N_4,即使含量<6.5%,只要工艺措施适当,也可获得高密度(相对密度达96~99%)的氮陶瓷,强度为500~600MN/m~2(部分达到700MN/m~2)。 试验表明,使用粒度细,α相含量高的Si_3N_4 原料,采用Si_3N_4 BN MgO 的埋粉,以及保温时间适当,是促进烧结的有效措施。研究指出:添加少量Al_2O_3-Y_2O_3 外加剂的 Si_3N_4 是以液相烧结为主。 用X射线衍射,扫描电镜和电子探针等检验了Si_3N_4的显微结构,表明 Al_2O_3已进入β-Si_3N_4 晶格,形成β’-Si_3N_4固溶体,晶格参数随 Al_2O_3 加入量增加而增大。  相似文献   

4.
硅粉生坯经过初次氮化制得硅–氮化硅–氧氮化硅体系的试样,分别于1 500和1 600℃氮气气氛下进行重烧实验,研究了高温稳定性。结果表明:在Si_2N_2O(s)与Si(l)两相接触的界面处,两者反应生成Si_3N_4(s)和介稳态SiO(g)。1 500℃重烧时体系氧分压[p(O_2)]处于Si_2N_2O相稳定存在的区间,故1 500℃重烧试样中Si_2N_2O相含量高;1 600℃重烧时体系p(O_2)小于Si_3N_4相能够稳定存在的临界值,Si(l)直接氮化生成Si_3N_4(s),故1 600℃重烧试样中β-Si_3N_4相是主要物相。体系中的SiO(g)与CO(g)反应生成纤维状SiC,由于SiO分压[p(SiO)]与温度T负相关,因此1 500℃重烧试样中SiC相的含量高于1 600℃重烧试样的。试样随炉冷却过程中,部分介稳态SiO(g)会与N2(g)反应生成α-Si_3N_4(s)。  相似文献   

5.
以MgO–Al_2O_3–CeO_2复合体系为烧结助剂,采用放电等离子烧结工艺制备氮化硅陶瓷。研究了MgO–Al_2O_3–CeO_2含量、烧结温度对氮化硅陶瓷显微结构及力学性能的影响;探讨了复合烧结助剂作用下氮化硅陶瓷的烧结机理。结果表明:当混合粉体中Si_3N_4、MgO、Al_2O_3和CeO_2的质量比为91:3:3:3、烧结温度为1600℃时,氮化硅烧结体相对密度(99.70%)、硬度(18.84GPa)和断裂韧性(8.82MPa?m1/2)达最大值,晶粒以长柱状的β相为主,α-Si_3N_4→β-Si_3N_4相转变率达93%;当混合粉体中Si_3N_4、MgO、Al2O3和CeO_2的质量比为88:4:4:4、烧结温度为1600℃时,烧结体抗弯强度(1086MPa)达到最大值。  相似文献   

6.
以具有相似粒径的国产和进口α-Si_3N_4粉体为原料、Y_2O_3为烧结助剂,1 750℃常压烧结制备多孔氮化硅陶瓷,对比粉体的影响。国产粉的球形度比进口粉要差,但是二者的成形坯体和烧结体均具有相似的致密度,并且进口粉制备的样品具有细棒状晶的微观组织和较高的强度。对2种α-Si_3N_4粉体引入Y_2O_3–Al_2O_3复合助剂体系进行的烧结研究表明:α-Si_3N_4粉体通过影响颗粒重排和溶解–沉淀过程影响不同烧结体的致密化和相转变,国产粉相变速率快而致密化慢,由此解释了多孔氮化硅陶瓷存在微观结构和强度差异的原因。  相似文献   

7.
为探讨TiO_2作为助烧结剂制备β-SiAlON的可行性,以粒度均为0.074 mm的金属Al粉、单质Si粉、α-Al_2O_3粉为主要原料,以无水乙醇为介质球磨12 h后,将经60℃干燥12 h后的粉料以乙二醇和酚醛树脂为结合剂混合均匀成型,在管式氮化炉中分别经1 350、1 400、1 450、1 500和1 550℃保温3 h高温氮化制备β-SiAlON陶瓷,研究了烧成温度和添加TiO_2对β-SiAlON陶瓷烧结性能的影响。借助XRD分析试样中晶相组成和晶胞参数,采用SEM及EDS对试样的微观形貌进行分析与观察。结果表明:高温氮化制备β-SiAlON的过程中,添加4%(w)的TiO_2可以降低氮化烧结温度,增加β-SiAlON的生成量;TiO_2的加入在较低温阶段可以促进Al_2O_3在Si_3N_4中的固溶,高温阶段则形成液相有利于β-SiAlON的致密化烧结。  相似文献   

8.
以α-Si_3N_4粉末为原料、Al_2O_3–RE_2O_3(RE=Lu,Y,Gd和La)为烧结助剂,在1 800℃压烧结制备氮化硅陶瓷,研究了不同烧结助剂对材料的相组成、微观结构和力学性能的影响。结果表明:样品中α-Si_3N_4完全转化为β-Si_3N_4,所形成的长柱状晶粒生长发育良好。随着稀土阳离子半径的增大,材料的相对密度和力学性能呈增加趋势,其中Si_3N_4–Al_2O_3–Gd_2O_3的抗弯强度和断裂韧性分别达到860 MPa和7.2 MPa·m~(1/2)。由于稀土离子对烧结液相黏度的影响,Si_3N_4–Al_2O_3–Lu_2O_3和Si_3N_4–Al_2O_3–Y_2O_3中出现了晶粒异常长大的现象,而Si_3N_4–Al_2O_3–La_2O_3的基体与柱状晶粒界面结合较大导致材料力学性能降低。  相似文献   

9.
本文以α-Si_3N_4为主要原料,3wt%Al_2O_3和5wt%Y2O_3为烧结助剂,TiCN为添加剂,通过热压烧结,详细研究了低烧结温度条件下TiCN的粒度和含量对Si_3N_4陶瓷的力学性能的影响。研究结果表明:在烧结温度为1600℃的条件下,TiCN的平均粒度约为1μm时,其增韧效果较为明显,且即随着TiCN添加量的增加,Si_3N_4陶瓷的韧性逐渐增加,从TiCN添加量为5%时的5.7±0.2 MPa·m~(1/2)增加到20%时6.5±0.2MPa·m~(1/2),且Si_3N_4陶瓷的硬度保持较高(约为17.7±0.2 GPa),从而在低温条件下制备出了高硬度、高韧性的Si_3N_4陶瓷。  相似文献   

10.
通过在高纯Si_3N_4粉中直接加入SiO_2粉体,来模拟高氧含量的Si_3N_4粉体,然后引入三元助剂Al_2O_3-Y_2O_3-TiO_2,促进致密化。结果表明:当SiO_2含量为4.5%(质量分数)时,SiO_2主要参与晶界玻璃相的形成,显微结构粗化,长棒状β-Si_3N_4晶粒的平均直径为(0.99±0.15)μm,硬度、强度和断裂韧性分别为(15.1±0.3)GPa、(468.6±15.6)MPa和(11.0±0.4)MPa·m~(1/2)。当SiO_2含量为9%时,除了形成晶界玻璃相,部分SiO_2还与Si_3N_4和Al_2O_3反应形成O'-Sialon相;通过晶界钉扎效应,O'-Sialon抑制了β-Si_3N_4晶粒的长大,长棒状β-Si_3N_4晶粒的平均直径为(0.56±0.13)μm,硬度、抗弯强度和断裂韧性分别为(17.1±0.7)GPa、(435.3±65.0)MPa和(11.1±1.0)MPa·m~(1/2)。因此,与含4.5%SiO_2粉体制备的Si_3N_4陶瓷相比,含9%SiO_2粉体制备的Si_3N_4陶瓷具有更细小的晶粒和更高的硬度。  相似文献   

11.
为了提高MgO-C材料的使用性能,试验以电熔镁砂(3~1和≤1 mm)、单质Si粉(≤0.074 mm)和鳞片石墨(≤0.074 mm)为主要原料,木质磺酸钙溶液为结合剂,在氮气气氛下分别于1 350℃保温2 h后再于1 500℃保温3 h制备Si_3N_4结合MgO-C材料。研究了Si粉加入质量分数分别为16%、18%、20%、22%和24%时对材料物理性能、物相组成和显微结构的影响。结果表明:当Si粉加入量(w)为16%时,试样具有最优的显气孔率、体积密度和耐压强度,此时试样中生成的物相有β-Si_3N_4、α-Si_3N_4和Si C,与其他试样相比,该试样中β-Si_3N_4的晶粒尺寸最小。另外,除Si粉加入量(w)在22%和24%时有少量MgSi N2相生成外,Si粉不同加入量的试样氮化后生成的物相无明显变化,主要有β-Si_3N_4、α-Si_3N_4和少量Si C相。试样中原位生成的β-Si_3N_4相主要呈短柱状。  相似文献   

12.
以Si_3N_4与Si O2为初始原料、Sm_2O_3为烧结助剂,通过无压烧结制备了气孔率不同的多孔Si_2N_2O陶瓷。研究了烧结温度、助剂含量对烧结后的产物的影响;测试了多孔Si_2N_2O陶瓷的力学性能、介电性能和抗氧化性能。结果表明:烧结温度过高或助剂含量过高都会导致Si_2N_2O相的分解;助剂含量对Si_2N_2O陶瓷微观组织产生明显的影响,随着助剂含量的增多,其显微结构由细小层片状过渡到板状晶粒再到短纤维搭接的板状晶粒结构,所制备的Si_2N_2O陶瓷比Si_3N_4陶瓷具有更优异的性能,抗弯强度为220 MPa,介电常数ε为4.1,介电损耗tanδ0.005。1 400℃氧化10 h,Si_2N_2O与Si_3N_4的质量增量分别为0.6%与2.1%。  相似文献   

13.
不同烧结气氛下SiAlON结合刚玉材料的烧结行为和显微结构   总被引:2,自引:2,他引:0  
以α-Al_2O_3微粉和Si_3N_4粉为主要原料,分别以Al粉、AlN粉、SiO_2微粉、Al粉 Ce_2O_3粉、Al粉 Si粉 Ce_2O_3粉作添加剂,在空气中裸烧(氧化气氛)和空气中埋炭(还原气氛)的条件下,分别进行1350℃、1450℃、1550℃、1600℃保温6h的热处理后,制备了SiAlON结合刚玉复相材料,并研究了烧结气氛、烧结温度和添加剂种类对试样烧结行为和显微结构的影响。结果表明添加稀土氧化物Ce_2O_3或少量SiO_2微粉能促进材料的烧结;在氧化气氛下,以SiO_2微粉为添加剂的试样的致密化程度随处理温度的升高而降低,而在埋炭还原气氛下,其致密化程度随温度的升高而提高;SEM观察还表明,含不同添加剂的试样在不同气氛中处理后的显微结构也不同。  相似文献   

14.
为了综合利用晶体硅金刚线切割废料,以其为原料,使用卧式氮化炉进行氮化反应,研究了氮化温度(1 300、1 350、1 400、1 450和1 500℃)、氮化保温时间(1、1. 5、2、2. 5和3 h)以及α-Si_3N_4外加量(外加质量分数分别为0、5%、10%、15%和20%)对氮化反应的影响。结果表明:在一定范围内,氮化温度的升高有利于α-Si_3N_4、β-Si_3N_4和Si_2N_2O三种物相的生成;氮化时间的延长有利于α-Si_3N_4、β-Si_3N_4和Si_2N_2O三种物相的生成,但氮化时间过长会导致α-Si_3N_4转变为β-Si_3N_4,以及Si_2N_2O转化为Si_3N_4;以α-Si_3N_4为添加剂,有利于α-Si_3N_4的生成以及氮化反应的进行。综合考虑切割废料的氮化程度,较优氮化条件为1 400℃保温3 h,α-Si_3N_4添加剂外加量10%(w)。  相似文献   

15.
在扫描电镜(SEM)观测的基础上,根据体视学的方法测定和计算了Si_3N_4-Y_2O_3-Al_2O_3系无压烧结Si_3N_4试样的高温显微结构参数,定量的确立了高温断裂强度、断裂机理与三维显微结构参数间的内在联系,以及工艺因素与断裂强度、显微结构间的关系。β-Si_3N_4晶粒间三维平均自由距离λ值随断裂温度升高的增大与σ_f值的降低成线性关系。等静压试样的λ值随温度升高的变化明显地大于干压试样。单位体积中晶粒比表面积Sv值随断裂温度升高趋于降低与λ值的增加成反向对应关系,表明晶界滑移分离机制是Si_3N_4材料高温断裂的重要原因之一。平均晶粒的比表面积Svp值与高温断裂中β-Si_3N_4晶粒形态的变化相对应,结合晶粒取向角及球相当径D_(3s)数据说明Si_3N_4材料的高温断裂中不仅产生晶界滑移分离、气孔扩散连通,以及晶界玻璃相的成核扩展,而且相伴有(β-Si_3N_4微晶的圆化分解过程。控制生坯试样中的气孔形态、孔径大小及分布,是降低晶粒轴率,提高纵横比的有效途径,从而有利于Si_3N_4材料的高温断裂强度。  相似文献   

16.
以Al_2O_3-Y_2O_3和Mg O-Y_2O_3为烧结助剂,通过热压烧结分别在1600℃和1800℃下制备Si_3N_4陶瓷。结果表明:以Al_2O_3-Y_2O_3助剂时,在1800℃热压烧结制备的Si_3N_4陶瓷具有显著的双峰结构和优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为15.60±0.27 GPa、1105.99±68.39 MPa和7.13±0.37 MPa·m~(1/2);以Mg O-Y_2O_3为助剂时,在1600℃热压烧结制备的Si_3N_4陶瓷具有较高的致密度,显微结构含有长径比较高的晶须状Si_3N_4晶粒,并且具有优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为16.53±0.21 GPa、1166.90±61.73 MPa和6.74±0.17 MPa·m~(1/2)。因此,在研究烧结助剂对Si_3N_4陶瓷性能的影响时,需结合其特定合适的烧结温度,才能有望获得综合性能优异的Si_3N_4陶瓷。  相似文献   

17.
以制备可用电火花加工的氮化硅基陶瓷材料为目的,用Zr N-Ti N作为导电相,以Y_2O_3、La_2O_3、Al N作为烧结助剂,在1750℃无压烧结Si_3N_4-Ti Zr N_2-Ti N复合导电陶瓷。测试了试样的烧结特性、机械性能及导电性能,用XRD和SEM分析表征了试样的物相和显微结构。其结果为:相对密度接近98%;试样的机械性能良好,抗弯强度可达到960 MPa,显微硬度为14.7 GPa,断裂韧性为7.6 MPa·m~(1/2);试样的电阻率由单相氮化硅陶瓷的10~(13)?·cm降低到复合导电陶瓷的10~(-2)?·cm数量级,可用电火花进行加工。物相分析表明,试样中生成了Ti Zr N_2新物相,形成了Si_3N_4-Ti Zr N_2-Ti N复合导电陶瓷。显微分析表明,试样中的三种晶粒均在2μm以下,具有相互结合紧密且分布较均匀的显微结构。  相似文献   

18.
采用碳热还原-常压烧结法制备高性能多孔氮化硅陶瓷材料,结合热力学分析和TG-DTA分析得出碳热还原反应的主要机理和起始反应温度,在此基础上分别通过三种烧结制度制备多孔氮化硅陶瓷,并利用XRD、SEM以及压汞仪研究其对结构与性能的影响。结果表明:碳热还原反应属于吸热反应,其吉布斯自由能随温度升高而降低,反应起始温度为1472℃;制得的多孔氮化硅陶瓷主要由长柱状β-Si_3N_4晶粒交错搭接而成,1200℃预烧结有利于β-Si_3N_4晶型的发育,制备的产物晶粒细小,长径比较大,组织分布均匀,晶粒结合较为紧密,其内部具备大量不规则孔隙结构,孔容为0.5538m L·g~(-1),孔隙率为48.04%,在保持较高的气孔率的同时兼具了较高的强度。  相似文献   

19.
为了综合利用多晶硅切割废浆料并提高产品的附加值,在提纯后的太阳能级多晶硅切割废料中加入粒度≤0.001 7 mm(1 500目)的硅粉,配制成单质Si含量(w)分别为12.51%、15.00%、20.00%、25.00%、30.00%、35.00%和40.00%的7种混合粉料,经成型、干燥后,在不同温度(分别为1 300、1 340、1 380、1 420和1 460℃)下氮化不同时间(分别为0.5、1.0、1.5、2.0、2.5和3.0 h)制备了氮化硅结合碳化硅(Si_3N_4-SiC)试样,然后检测试样的体积密度、显气孔率、常温耐压强度和常温抗折强度,并进行了SEM分析。结果表明:氮化温度过高及氮化时间过长均会促进α-Si_3N_4向β-Si_3N_4转变,并降低氮化后试样的致密度和强度。本试验中,较优的制备条件为:氮化温度1 380℃,氮化时间2 h,单质Si含量15.00%(w)。在较优的制备条件下制得的Si_3N_4-SiC试样,其常温抗折强度为15.1 MPa,常温耐压强度为126 MPa,体积密度为1.99 g·cm~(-3),显气孔率为38.1%。  相似文献   

20.
本工作对两种成分的Si_3N_4陶瓷进行了热压烧结。测定了密度、硬度、抗弯强度、断裂韧性等性能指标。在扫描电镜下进行了显微结构及断口观察。研究表明,同时加入几种添加剂(Y_2O_3、MgO、AIN、Al_2O_3等)对形成均匀致密、长径比大,粒径小的柱状β-Si_3N_4有利,高的断裂韧性和抗弯强度的获得主要取决于以柱状β晶为基本特征的显微结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号