首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Quorum sensing (QS) has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identified. A confirmatory bioassay was carried out after concentrating the putative positive culture supernatant, and 22 strains were confirmed to have anti-LasR activity. Finally, we determined the strain JM2, which could completely inhibit biofilm formation of Pseudomonas aeruginosa PAO1, belonged to the genus Pseudomonas by analysis of 16S rDNA. Partially purified inhibitor factor(s) F5 derived from culture supernatants specifically inhibited LasR-controlled elastase and protease in wild type P. aeruginosa PAO1 by 68% and 73%, respectively, without significantly affecting growth; the rhl-controlled pyocyanin and rhamnolipids were inhibited by 54% and 52% in the presence of 100 μg/mL of F5. The swarming motility and biofilm of PAO1 were also inhibited by F5. Real time RT-PCR on samples from 100 μg/mL F5-treated P. aeruginosa showed downregulation of autoinducer synthase (LasRI and rhlI) and cognate receptor (lasR and rhlR) genes by 50%, 28%, 48%, and 29%, respectively. These results provide compelling evidence that the F5 inhibitor(s) interferes with the las system and significantly inhibits biofilm formation.  相似文献   

2.
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.  相似文献   

3.
Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms.  相似文献   

4.
Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.  相似文献   

5.
This study was undertaken to optimize the conditions for the extraction of antibacterial activity of Perilla frutescens var. acuta leaf against Pseudomonas aeruginosa KCTC 2004 using the evolutionary operation-factorial (EVOP) design technique. Increased antibacterial activity was achieved at higher extraction temperatures and with a longer extraction time. Antibacterial activity was not affected by differing ethanol concentration in the extraction solvent. The maximum antibacterial activity of ethanolic extract of P. frutescens var. acuta leaf against P. aeruginosa, determined by the EVOP factorial technique, was obtained at an extraction temperature of 80 °C (R = -0.800(**)), 26 h (R = -0.731(**)) extraction time, and 50% (R = -0.075) ethanol concentration. The population of P. aeruginosa also decreased from 6.660 log CFU/mL in the initial set to 4.060 log CFU/mL in the third set. Also, scanning electron microscopy study of the ethanolic extract of P. frutescens var. acuta revealed potential detrimental effects on the morphology of P. aeruginosa.  相似文献   

6.
In the present work, the crystallization behavior and in vitro-in vivo hydrolysis rates of PLA absorbable reinforcement ligaments used in orthopaedics for the repair and reinforcement of articulation instabilities were studied. Tensile strength tests showed that this reinforcement ligament has similar mechanical properties to Fascia Latta, which is an allograft sourced from the ilio-tibial band of the human body. The PLA reinforcement ligament is a semicrystalline material with a glass transition temperature around 61 °C and a melting point of ~178 °C. Dynamic crystallization revealed that, although the crystallization rates of the material are slow, they are faster than the often-reported PLA crystallization rates. Mass loss and molecular weight reduction measurements showed that in vitro hydrolysis at 50 °C initially takes place at a slow rate, which gets progressively higher after 30-40 days. As found from SEM micrographs, deterioration of the PLA fibers begins during this time. Furthermore, as found from in vivo hydrolysis in the human body, the PLA reinforcement ligament is fully biocompatible and after 6 months of implantation is completely covered with flesh. However, the observed hydrolysis rate from in vivo studies was slow due to high molecular weight and degree of crystallinity.  相似文献   

7.
The new microbial isolate Pseudomonas aeruginosa (PR3) has been reported to produce from oleic acid a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD), with 10-hydroxy-8-octadecenoic acid (HOD) being a probable intermediate. The production of DOD involves the introduction of two hydroxyl groups at carbon numbers 7 and 10, and a rearrangement of the double bond from carbons 9–10 to 8–9. It has been shown that the 8–9 unsaturation of HOD was possibly in the cis configuration. Now we report that the rearranged double bond of HOD is trans rather than cis, as determined by spectral data. Also, it was found that the 10-hydroxyl was in the S-configuration as determined by gas chromatographic separation of R- and S-isomers after preparation of the (−)-menthoxycarbonyl derivative of the hydroxyl group followed by oxidative cleavage of the double bond and methyl esterification. This latter result coincides with our recent finding that the main final product, DOD, is in the 7(S),10(S)-dihydroxy configuration. In addition, a minor isomer of HOD (about 3%) with the 10(R)-hydroxyl configuration was also detected. From the data obtained herein, we concluded that 10(S)-hydroxy-8(E)-octadecenoic acid is the probable intermediate in the bioconversion of oleic acid to 7(S),10(S)-dihydroxy-8(E)-octadecenoic acid by PR3.  相似文献   

8.

Background

The lung epithelium constitutes the first barrier against invading pathogens and also a major surface potentially exposed to nanoparticles. In order to ensure and preserve lung epithelial barrier function, the alveolar compartment possesses local defence mechanisms that are able to control bacterial infection. For instance, alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. The consequences of nanoparticle exposure in the context of lung infection have not been studied in detail. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages.

Results

Here we have studied the consequences of SiO2 nanoparticle exposure on Pseudomonas aeruginosa clearance, Pseudomonas aeruginosa-induced inflammation and lung injury in a mouse model of acute pneumonia. We observed that pre-exposure to SiO2 nanoparticles increased mice susceptibility to lethal pneumonia but did not modify lung clearance of a bioluminescent Pseudomonas aeruginosa strain. Furthermore, internalisation of SiO2 nanoparticles by primary alveolar macrophages did not reduce the capacity of the cells to clear Pseudomonas aeruginosa. In our murine model, SiO2 nanoparticle pre-exposure preferentially enhanced Pseudomonas aeruginosa-induced lung permeability (the latter assessed by the measurement of alveolar albumin and IgM concentrations) rather than contributing to Pseudomonas aeruginosa-induced lung inflammation (as measured by leukocyte recruitment and cytokine concentration in the alveolar compartment).

Conclusions

We show that pre-exposure to SiO2 nanoparticles increases mice susceptibility to lethal pneumonia but independently of macrophage phagocytic function. The deleterious effects of SiO2 nanoparticle exposure during Pseudomonas aeruginosa-induced pneumonia are related to alterations of the alveolar-capillary barrier rather than to modulation of the inflammatory responses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12989-014-0078-9) contains supplementary material, which is available to authorized users.  相似文献   

9.
Variations in genes involved in DNA repair systems have been proposed as risk factors for the development of preeclampsia (PE). We conducted a case-control study to investigate the association of Human apurinic/apyrimidinic (AP) endonuclease (APEX1) Asp148Glu (rs1130409), Xeroderma Pigmentosum group D (XPD) Lys751Gln (rs13181), X-ray repair cross-complementing group 1 (XRCC) Arg399Gln (rs25487) and X-ray repair cross-complementing group 3 (XRCC3) Thr241Met (rs861539) polymorphisms with PE in a Mexican population. Samples of 202 cases and 350 controls were genotyped using RTPCR. Association analyses based on a χ2 test and binary logistic regression were performed to determine the odds ratio (OR) and a 95% confidence interval (95% CI) for each polymorphism. The allelic frequencies of APEX1 Asp148Glu polymorphism showed statistical significant differences between preeclamptic and normal women (p = 0.036). Although neither of the polymorphisms proved to be a risk factor for the disease, the APEX1 Asp148Glu polymorphism showed a tendency of association (OR: 1.74, 95% CI = 0.96–3.14) and a significant trend (p for trend = 0.048). A subgroup analyses revealed differences in the allelic frequencies of APEX1 Asp148Glu polymorphism between women with mild preeclampsia and severe preeclampsia (p = 0.035). In conclusion, our results reveal no association between XPD Lys751Gln, XRCC Arg399Gln and XRCC3 Thr241Met polymorphisms and the risk of PE in a Mexican mestizo population; however, the results in the APEX1 Asp148Glu polymorphism suggest the need for future studies using a larger sample size.  相似文献   

10.
Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.  相似文献   

11.
Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS−/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.  相似文献   

12.
Isothermal nucleic-acid amplification methods such as Loop-Mediated isothermal AMPlification (LAMP) are increasingly appealing alternatives to PCR for use in portable diagnostic system due to the low cost, weight, and power requirements of the instrumentation. As such, interest in developing new probes and other functionality based on the LAMP reaction has been intense. Here, we report on the development of duplexed LAMP assays for pathogen detection using spectrally unique Assimilating Probes. As proof of principle, we used a reaction for Salmonella enterica as a model coupled with a reaction for λ-phage DNA as an internal control, as well as a duplexed assay to sub-type specific quarantine strains of the bacterial wilt pathogen Ralstonia solanacearum. Detection limits for bacterial DNA analyzed in individual reactions was less than 100 genomic equivalents in all cases, and increased by one to two orders of magnitude when reactions were coupled in duplexed formats. Even so, due to the more robust activity of newly available strand-displacing polymerases, the duplexed assays reported here were more powerful than analogous individual reactions reported only a few years ago, and represent a significant advance for incorporation of internal controls to validate assay results in the field.  相似文献   

13.
Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder.  相似文献   

14.
15.
Primary dysmenorrhea is one of the most common reasons for gynecologic visits, but due to the lack of suitable animal models, the pathologic mechanisms and related drug development are limited. Herein, we establish a new mouse model which can mimic the periodic occurrence of primary dysmenorrhea to solve this problem. Non-pregnant female mice were pretreated with estradiol benzoate for 3 consecutive days. After that, mice were injected with oxytocin to simulate menstrual pain on the 4th, 8th, 12th, and 16th days (four estrus cycles). Assessment of the cumulative writhing score, uterine tissue morphology, and uterine artery blood flow and biochemical analysis were performed at each time point. Oxytocin injection induced an equally severe writhing reaction and increased PGF accompanied with upregulated expression of COX-2 on the 4th and 8th days. In addition, decreased uterine artery blood flow but increased resistive index (RI) and pulsatility index (PI) were also observed. Furthermore, the metabolomics analysis results indicated that arachidonic acid metabolism; linoleic acid metabolism; glycerophospholipid metabolism; valine, leucine, and isoleucine biosynthesis; alpha-linolenic acid metabolism; and biosynthesis of unsaturated fatty acids might play important roles in the recurrence of primary dysmenorrhea. This new mouse model is able to mimic the clinical characteristics of primary dysmenorrhea for up to two estrous cycles.  相似文献   

16.
Enzymatic saccharification of pure α-cellulose was conducted in oscillatory baffled (OBR) and stirred tank (STR) reactors over a range of mixing intensities requiring power densities (P/V) from 0 to 250 Watts per cubic metre (W/m3). Both reactor designs produced similar saccharification conversion rates at zero mixing. Conversion increased with increasing mixing intensity. The maximum conversion rate occurred at an oscillatory Reynolds number (Reo) of 600 in the OBR and at an impeller speed of between 185 and 350 rpm in the STR. The OBR was able to achieve a maximum conversion rate at a much lower power density (2.36 W/m3) than the STR (37.2–250 W/m3). The OBR demonstrated a 94–99% decrease in the required power density to achieve maximum conversion rates and showed a 12% increase in glucose production after 24 h at 2.36 W/m3.  相似文献   

17.
Clivia is a genus of great horticultural importance and has been widely cultivated as ornamental plants in all over the world. In order to assess the phylogenetic relationships and genetic diversity of the wild Clivia species and cultivars, we isolated AC-enriched repeats using FIASCO from a single clone each of C. miniata Regel. and Clivia nobilis Lindl. Of the fourteen repeats, 10 were polymorphic and 4 were monomorphic. The polymorphic marker loci were characterized using 61 Clivia accessions. The number of alleles ranged from two to six, observed heterozygosity ranged from 0.04 to 1.00 and expected heterozygosity ranged from 0.04 to 0.83. These microsatellite marker loci provide tools for future studies of Clivia species and cultivars.  相似文献   

18.
Mercury (Hg) is a highly hazardous pollutant widely used in industrial, pharmaceutical and agricultural fields. Mercury is found in the environment in several forms, elemental, inorganic (iHg) and organic, all of which are toxic. Considering that the liver is the organ primarily involved in the regulation of metabolic pathways, homeostasis and detoxification we investigated the morphological and ultrastructural effects in Danio rerio liver after 96 h exposure to two low HgCl2 concentrations (7.7 and 38.5 μg/L). We showed that a short-term exposure to very low concentrations of iHg severely affects liver morphology and ultrastructure. The main effects recorded in this work were: cytoplasm vacuolization, decrease in both lipid droplets and glycogen granules, increase in number of mitochondria, increase of rough endoplasmic reticulum and pyknotic nuclei. Pathological alterations observed were dose dependent. Trough immunohistochemistry, in situ hybridization and real-time PCR analysis, the induction of metallothionein (MT) under stressor conditions was also evaluated. Some of observed alterations could be considered as a general response of tissue to heavy metals, whereas others (such as increased number of mitochondria and increase of RER) may be considered as an adaptive response to mercury.  相似文献   

19.
A novel compound, 12,13,17-trihydroxy-9(Z)-octadecenoic acid (THOA), was produced from linoleic acid by microbial transformation at 25% yield. The newly isolated microbial strain that catalyzed this transformation was identified asClavibacter sp. ALA2. The product was purified by high-pressure liquid chromatography, and its structure was determined by1H and13C nuclear magnetic resonance, Fourier transform infrared, and mass spectroscopy. Maximum production of THOA was reached after 85 h of reaction. THOA was not further metabolized by strain ALA2. This is the first report on 12,13,17-trihydroxy unsaturated fatty acid and its production by microbial transformation.  相似文献   

20.
The efficacy of different concentrations of aqueous neem leaf extract (3.12 to 50 mg/mL) on growth and citrinin production in three isolates of Penicillium citrinum was investigated under laboratory conditions. Mycotoxin production by the isolates was suppressed, depending on the concentration of the plant extract added to culture media at the time of spore inoculation. Citrinin production in fungal mycelia grown for 21 days in culture media containing 3.12 mg/mL of the aqueous extract of neem leaf was inhibited by approximately 80% in three isolates of P. citrinum. High-performance liquid chromatography was performed to confirm the spectrophotometric results. Vegetative growth was assessed, but neem extract failed to inhibit it. Neem leaf extract showed inhibition of toxin production without retardation in fungal mycelia growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号