首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.  相似文献   

3.
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6''-N-acetyltransferase type Ib-cr4 (aac(6'')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6'')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.  相似文献   

4.
5.
Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.  相似文献   

6.
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal–oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.  相似文献   

7.
8.
Salmonella enterica serovar Infantis (S. Infantis) is an intracellular bacterial pathogen. It is prevalent but resistant to antibiotics. Therefore, the therapeutic effect of antibiotics on Salmonella infection is limited. In this study, we used the piglet diarrhea model and the Caco2 cell model to explore the mechanism of probiotic Lactobacillus johnsonii L531 (L. johnsonii L531) against S. Infantis infection. L. johnsonii L531 attenuated S. Infantis-induced intestinal structural and cellular ultrastructural damage. The expression of NOD pathway-related proteins (NOD1/2, RIP2), autophagy-related key proteins (ATG16L1, IRGM), and endoplasmic reticulum (ER) stress markers (GRP78, IRE1) were increased after S. Infantis infection. Notably, L. johnsonii L531 pretreatment not only inhibited the activation of the above signaling pathways but also played an anti-S. Infantis infection role in accelerating autophagic degradation. However, RIP2 knockdown did not interfere with ER stress and the activation of autophagy induced by S. Infantis in Caco2 cells. Our data suggest that L. johnsonii L531 pretreatment alleviates the intestinal damage caused by S. Infantis by inhibiting NOD activation and regulating ER stress, as well as promoting autophagic degradation.  相似文献   

9.
Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.  相似文献   

10.
Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR) and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.  相似文献   

11.
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.  相似文献   

12.
Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.  相似文献   

13.
In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.  相似文献   

14.
Biofilm formation is important for virulence of a large number of plant pathogenic bacteria. Indeed, some virulence genes have been found to be involved in the formation of biofilm in bacterial fruit blotch pathogen Acidovorax citrulli. However, some virulent strains of A. citrulli were unable to format biofilm, indicating the complexity between biofilm formation and virulence. In this study, virulence-related genes were identified in the biofilm-defective strain A1 of A. citrulli by using Tn5 insertion, pathogenicity test, and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). Results from this study indicated that 22 out of the obtained 301 mutants significantly decreased the virulence of strain A1 compared to the wild-type. Furthermore, sequence analysis indicated that the obtained 22 mutants were due to the insertion of Tn5 into eight genes, including Aave 4244 (cation diffusion facilitator family transporter), Aave 4286 (hypothetical protein), Aave 4189 (alpha/beta hydrolase fold), Aave 1911 (IMP dehydrogenase/GMP reductase domain), Aave 4383 (bacterial export proteins, family 1), Aave 4256 (Hsp70 protein), Aave 0003 (histidine kinase, DNA gyrase B, and HSP90-like ATPase), and Aave 2428 (pyridoxal-phosphate dependent enzyme). Furthermore, the growth of mutant Aave 2428 was unaffected and even increased by the change in incubation temperature, NaCl concentration and the pH of the LB broth, indicating that this gene may be directly involved in the bacterial virulence. Overall, the determination of the eight pathogenicity-related genes in strain A1 will be helpful to elucidate the pathogenesis of biofilm-defective A. citrulli.  相似文献   

15.
The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.  相似文献   

16.
17.
18.
This study was aimed at assessing the DNA damage protective activity of different types of extracts (aqueous, methanolic and acetonic) using an in vitro DNA nicking assay. Several parameters were optimized using the pUC18 plasmid, especially FeSO4, EDTA, solvent concentrations and incubation time. Special attention has been paid to removing the protective and damaging effect of the solvent and FeSO4 respectively, as well as to identifying the relevant positive and negative controls. For each solvent, the optimal conditions were determined: (i) for aqueous extracts, 0.33 mM of FeSO4 and 0.62 mM of EDTA were incubated for 20 min at 37 °C; (ii) for acetone extracts, 1.16% solvent were incubated for 15 min at 37 °C with 1.3 mM of FeSO4 and 2.5 mM of EDTA and (iii) for methanol extracts, 0.16% solvent, were incubated for 1.5 h at 37 °C with 0.33 mM of FeSO4 and 0.62 mM of EDTA. Using the optimized conditions, the DNA damage protective activity of aqueous, methanolic and acetonic extracts of an Amazonian palm berry (Oenocarpus bataua) and green tea (Camellia sinensis) was assessed. Aqueous and acetonic Oenocarpus bataua extracts were protective against DNA damage, whereas aqueous, methanolic and acetonic extracts of Camellia sinensis extracts induced DNA damage.  相似文献   

19.
The evaluation of biochemical markers is important for the understanding of the mechanisms of tolerance to salinity of Phaseolus beans. We have evaluated several growth parameters in young plants of three Phaseolus vulgaris cultivars subjected to four salinity levels (0, 50, 100, and 150 mM NaCl); one cultivar of P. coccineus, a closely related species reported as more salt tolerant than common bean, was included as external reference. Biochemical parameters evaluated in leaves of young plants included the concentrations of ions (Na+, K+, and Cl), osmolytes (proline, glycine betaine, and total soluble sugars), and individual soluble carbohydrates. Considerable differences were found among cultivars, salinity levels, and in their interaction for most traits. In general, the linear component of the salinity factor for the growth parameters and biochemical markers was the most important. Large differences in the salinity response were found, with P. vulgaris cultivars “The Prince” and “Maxidor” being, respectively, the most susceptible and tolerant ones. Our results support that salt stress tolerance in beans is mostly based on restriction of Na+ (and, to a lesser extent, also of Cl) transport to shoots, and on the accumulation of myo-inositol for osmotic adjustment. These responses to stress during vegetative growth appear to be more efficient in the tolerant P. vulgaris cultivar “Maxidor”. Proline accumulation is a reliable marker of the level of salt stress affecting Phaseolus plants, but does not seem to be directly related to stress tolerance mechanisms. These results provide useful information on the responses to salinity of Phaseolus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号