首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The results of an unsteady stirring method staged, used in the suspension polymerization of styrene in a lab‐scale batch reactor, are presented. Variation of droplet size during the whole polymerization process under the unsteady stirring condition, compared with that under a steady stirring condition, was found to be small. According to the variable droplet size character, two methods were used to divide the polymerization process into four stages and the unsteady stirring method was used in only one stage of each experimental run. By these operations, the optimum operation of obtaining large particle product with uniform particle size distribution was achieved. The results suggest that controlling the droplet coalescence process is more important than controlling the initial droplet size distribution to obtain uniform final particle products. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1873–1881, 2001  相似文献   

2.
Emulsion and suspension polymerization processes have widely been studied for more than 40 years. Although both polymerization processes are performed in heterogeneous media, each one presents its own typical characteristics, such as the particle size distribution, molecular weight distribution, polymer particle nucleation rate, and polymerization rate. In this study, semibatch styrene suspension polymerizations were carried out with feed compositions typical of emulsion processes. The initial reactor charge resembled the recipe of standard styrene suspension polymerizations, and the emulsion polymerization constituents were added during the batch. The influence of the moment at which the emulsion feed was started on the course of the polymerization and the effects of the feed on the polymer properties were analyzed. The polymer particle morphology and the average molecular weights changed very significantly with the emulsion feed time, and the changes could lead to the production of broad molecular weight distributions. Core–shell polymer particles could also be obtained, with the core being formed of polymer particles originating from the suspension polymerization process and the shell being formed of polymer particles originating from the emulsion polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3021–3038, 2003  相似文献   

3.
Hollow polymer particles with large voids were prepared with styrene (St) as the main component and in the presence of a small amount of N,N′‐dimethylaminoethyl methacrylate (DMAEMA) via a glass‐membrane emulsification technique and a subsequent suspension polymerization. A mixture of the monomer, hexadecane (HD), and N,N′‐azobis(2,4‐dimethylvaleronitrile) as an initiator was used as a dispersed phase (oil phase). By the careful pushing of the dispersed phase through the pores of the glass membrane into the aqueous phase, an emulsion of fairly monodisperse monomer droplets was formed. Then, the polymerization was performed by temperature being elevated to 70°C. The aqueous phase (continuous phase) contained poly(N‐vinyl pyrrolidone) as a stabilizer, sodium lauryl sulfate as a surfactant, Na2SO4 as an electrolyte, and sodium nitrite (NaNO2) as a water‐soluble inhibitor. Results related to the effects of the HD content, DMAEMA, and the composition of the comonomer, including the crosslinker and flexible segment, on the features of the hollow particles were investigated. When the content of DMAEMA was higher than 1.0 wt % based on the total monomer, small, secondary particles were generated in the aqueous phase, but the generation was effectively prevented when DMAEMA was limited to 0.5 wt %. Hollow particles, with an average diameter of around 7 μm, were obtained with an St–DMAEMA system. The void size of the hollow particles was controlled by the HD content. When the HD content was lower (<25 wt % based on the oil phase), unbroken hollow particles were easily obtained. However, they tended to break into halves after drying when the HD content was increased to 50 wt %. A soft segment, lauryl acrylate, and a crosslinker, ethylene glycol dimethacrylate, were added to overcome this problem. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 244–251, 2003  相似文献   

4.
We have conducted a study of composite polymer particles with a gradated resin composition by suspension polymerization, in which the resin composition gradually changes from the surface to the center of the particles. The binder resin of the polymer particles consists primarily of styrene, butyl acrylate, and methacrylic acid (MAA). Fourier transform infrared/photoacoustic spectroscopy analysis of the polymer particles by suspension polymerization has proved that MAA, having a higher polarity, concentrates near the surface of the particles, and this results in a formation similar to a core–shell structure. These composite polymer particles are excellent in blocking resistivity because the resin, containing a higher concentration of MAA, has a high glass‐transition temperature. Composite polymer particles with a gradated MAA concentration could be used for toner applications in low‐power hot‐roll fusing electrophotography systems because the melting property of the core resin is controlled and allows fusing at lower temperatures. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 682–690, 2005  相似文献   

5.
An unsteady stirring method, that is, coreverse rotation with different periodic intervals, was adopted to the suspension polymerization of styrene. Experiments were carried out in a 0.5‐L flat‐bottom flask with a six‐blade Rushton turbine. Parameters affecting the final particle size and the particle size distribution under the unsteady stirring conditions, such as the agitation speed and the periodic interval, had been studied in detail, and the results were compared with those under a steady stirring one. The experimental results showed that the average particle size decreased and the uniformity final particle size distribution could be significantly improved when unsteady stirring approach is used. These were explained as the result of the decrease of the coalescence rate during the suspension polymerization when the unsteady stirring method was used. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1431–1438, 2000  相似文献   

6.
The prediction of the final particle size for reactive systems such as the reactions of suspension polymerization is a complex matter. Thus, the preparation of very small microparticles is specially challenging, probably because of the coalescence of the polymeric beads taking place during the later stages of the polymerization. In this work, very small gel‐type styrene‐co‐divinylbenzene beads were synthesized by using a previously determined set of experimental synthesis conditions in which the stabilization of the dispersion of the monomeric droplets was ensured, and, under these conditions, the factors related to the geometry of the experimental device were modified to determine their actual effect on the final size of the microparticles. From the experimental results, a very simple and useful model was obtained that was able to predict the final size of the microparticles as a function of the values of the geometric factors of the reactor. This model indicates that the most influential factors in the final size of the microparticles are the liquid depth inside the reactor and the stirrer diameter; thus, an increase in the liquid depth produces larger particles, and, conversely, the particle size decreases when using larger stirrer diameters. Additionally, the model permits the design of polymerization experiments aimed at obtaining microparticles with a diameter smaller than 50 μm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
The bulk polymerization of styrene in the presence of the vinyl functional sulfonic acid 2‐sulfoethylmethacrylate (SEM) was found to have utility for making polystyrenes with narrow polydispersity, bimodal polydispersity, and ultrahigh molecular weight at fast polymerization rates. Narrow polydispersity polymers were made by the addition of SEM to nitroxide‐mediated polymerizations. Bimodal polydispersity polymers were made by the ultrahigh molecular weight component being made in the presence of SEM in the absence of an initiator and the low molecular weight component being made in the presence of an initiator and/or chain‐transfer agent. Ultrahigh molecular weight monomodal polystyrenes were prepared at much faster polymerization rates than possible via spontaneous polymerization in the absence of SEM. SEM was found to be more effective, by an order of magnitude, than camphor sulfonic acid on a weight basis and, because it is copolymerized into the polymer chain, should not lead to corrosion problems during fabrication of the polymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 869–875, 2003  相似文献   

8.
We carried out the suspension polymerization of styrene, initiated with benzoyl peroxide at 80°C, in the presence of the simultaneous polymerization of acrylic acid in the water phase, initiated by potassium peroxidisulfate (KPS) at the same temperature. The polymerization in the water phase was started at certain times after the beginning of the polymerization of styrene. Then, a continuous addition of KPS was carried out at a given landing rate and during variable feeding times. The water‐phase polymerization actually produced a copolymer of styrene and acrylic acid, which displayed surface‐active properties. The particle size distribution depended on the variables mentioned earlier (starting time, KPS feeding rate, and addition time), being controlled by the molecular weight, and on the composition of the copolymer produced and its availability at the increasing conversion of styrene. A second distribution of submicronic particles was produced. Both families of particles had about the same molecular weight. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3271–3285, 2002  相似文献   

9.
Styrene oligomers (Mn, 2500–3000 g/mol) with low polydispersity index and containing peroxidic groups within their structure were synthesized using a novel trifunctional cyclic radical initiator, diethylketone triperoxide (DEKTP), through nitroxide‐mediated radical polymerization (NMRP), using OH‐TEMPO. During the synthesis of the polystyrene (PS) oligomers, camphorsulfonic acid (CSA) was used to inhibit the thermal autoinitiation of styrene at the evaluated temperatures (T = 120–130°C). The polymerization rate, which can be related to the slope of the plot of monomer conversion with reaction time, was monitored as a function of OH‐TEMPO, DEKTP, and CSA concentrations. The experimental results showed that all the synthesized polymers presented narrow molecular weight distributions, and the monomer conversion and the molecular weight of the polymers increased as a function of reaction time. Under the experimental conditions, T = 130°C, [DEKTP] = 10 mM, and [DEKTP]/[OH‐TEMPO] = 6.5, PS oligomers containing unreacted O? O sites in their inner structure were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The effects of a series of short chain alcohols, 1‐butanol (C4OH), 1‐pentanol (C5OH), and 1‐hexanol (C6OH), on the styrene (ST) emulsion polymerization mechanisms and kinetics were investigated. The CMC of the ST emulsions stabilized by sodium dodecyl sulfate (SDS) first decreases rapidly and then levels off when the CiOH (i = 4, 5, or 6) concentration ([CiOH]) increases from 0 to 72 mM. Furthermore, at constant [CiOH], the CMC data in decreasing order is CMC (C4OH) > CMC (C5OH) > CMC (C6OH). The effects of CiOH (i = 4, 5, and 6) on the ST emulsion polymerization stabilized by 6 mM SDS are significant. This is attributed to the reduction in CMC by CiOH, the different oil–water interfacial properties, the different concentrations of monomer within latex particles, and the different effectiveness of SDS/CiOH in stabilizing latex particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4406–4411, 2006  相似文献   

11.
In this research, using hexaphenoxycyclotriphosphazene (HPCTP) as the halogen-free flame retardant, we prepared flame-retardant expandable polystyrene (EPS) beads by suspension polymerization. The effects of process parameters and the amount of flame retardant on polystyrene (PS)/HPCTP composite beads were investigated. The results show that the change in HPCTP content has little effect on the particle size distribution of composite beads. When the oil–water ratio is 1/4, TCP dosage is 3 wt %, stirring rate is 350 rpm, initiator dosage is 1.25 wt %, and HPCTP dosage is 15 wt %, the size of the composite beads is uniform, and the average particle size is 1.12 mm. HPCTP formed nanodispersed particles in the PS matrix with an average particle size of 44.86 nm. In addition, the thermogravimetric behavior and heat-release properties of composite beads were evaluated. The results showed that HPCTP mainly acted in the gaseous phase, which can effectively decrease the maximum mass-loss rate of the PS/HPTCP composite beads and significantly reduce the heat-release rate and heat-release capacity. The EPS foams were obtained by a prefoaming method. The average cell diameter was 62.15 μm, and the foaming ratio was 11 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47779.  相似文献   

12.
The influence of montmorillonite (MMT) on the syndiotactic polymerization behavior of styrene was studied. To avoid the hydrophilic surface of the MMT coming into contact with the catalyst, which could poison it, SAN was introduced between the MMT and Cp*Ti (OCH3)3. MMT was introduced into the catalytic system as a supporter for the Ti catalyst (supported catalytic system) or just dispersed in the polymerization solvent directly (in situ polymerization system). The polymerization results showed that surface modification of MMT dramatically affected the catalytic activity as well as the syndiotacticity of the polymers. This is mainly explained by the insulator SAN preventing the formation of the inactive/little active species Si? O? Ti and other atactic active species resulting from the reaction of the ? OH on the MMT layer surface with Cp*Ti(OCH3)3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
We developed a mathematical model to describe the behavior of semibatch styrene suspension polymerization processes, where the constituents of a typical emulsion polymerization process are added into the reaction vessel during the course of a typical suspension reaction. This technique was recently described for the production of core–shell polymer particles. The model assumes that the nucleated emulsion particles can agglomerate with the sticky and much bigger suspension particles and that the agglomeration rate constant is a function of the internal states of the suspended droplets. The proposed model presented good agreement with experimental conversion, average molecular weight, and molecular weight distribution data. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1950–1967, 2005  相似文献   

14.
The effects of the dispersed phase to continuous phase ratio (weight of VCM (gr)/weight of water (gr) (φ = gVCM/gwater)) on the particle properties of a poly(vinyl chloride) (PVC) suspension were investigated experimentally. A series of experiments were performed with different φ values in a pilot‐scale reactor. The cold plasticizer absorption of the resin decreased with φ. Scanning electron micrographs showed that by the reduction of φ, many of the produced particles had a regular shape, a smooth surface, and greater porosity. An increase in φ caused a wider and multimodal particle size distribution of the produced PVC particles. The mean particle size and bulk density also increased with φ, whereas the molecular weight and polydispersity index did not change. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
许冰文  王红  何艳萍  肖小琴  孙彦琳 《化工进展》2014,33(11):2882-2887
以苯乙烯(St)为单体、十二烷基硫酸钠(SDS)为乳化剂、过硫酸钾(KPS)为引发剂,重点研究了该乳液聚合体系中乳化剂浓度([S])对胶束成核和沉淀成核的影响规律。结果表明,当SDS浓度高于CMC时([S]≥ 8mmol/L),体系的成核以胶束成核为主;当[S]=2mmol/L时,体系的成核以沉淀成核为主;当2mmol/L<[S]< 8mmol/L时,体系同时以沉淀成核和胶束成核两种方式成核,且胶束成核所占的比例随着SDS浓度的增加而增大。研究了聚合反应过程中SDS浓度对单位体积水中乳胶粒个数(Np)的影响规律:当[S]≥8mmol/L时,Np∝[S]0.9;当[S]<8mmol/L时,Np∝[S]0.8。  相似文献   

16.
Monodisperse crosslinked polystyrene microspheres were prepared by the dispersion copolymerization of styrene and divinylbenzene in a mixed solvent of ethanol and H2O. 2,2′‐Azobisisobutyronitrile and poly(N‐vinyl pyrrolidone) were used as the initiator and steric stabilizer, respectively. The crosslinker‐postaddition method was adopted through a slow addition of a crosslinking agent into the dispersion system at a certain time after the beginning of the polymerization. The effects of the postaddition recipe, postaddition beginning time, postaddition velocity, and agitation rate on the particle size, size distribution, and morphology were discussed. The resulting polymer microspheres were characterized with scanning electron microscopy and laser particle analysis. Crosslinked polystyrene microspheres with a narrow size distribution and a 12.0% crosslinker level were obtained with a size of 1.0 μm through the crosslinker‐postaddition method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
The effects of some polymerization conditions on poly(vinyl chloride) (PVC) particles produced by the suspension polymerization process were studied on a laboratory scale. The different stages of vinyl chloride suspension polymerization were investigated experimentally by using an on-line sample withdrawal technique during reaction. It was found that the method of addition of initiator has a great effect on the PVC particle uniformity as well as the size distribution. Furthermore, when the initiator was predispersed in the continuous phase, some latex particles were formed. The effect of the type of stabilizer was also studied with two different types of PVA [partially hydrolyzed poly(vinyl acetate)]. It was found that by changing the stabilizer, the particle size, the porosity, and the morphology could change. When H80 (PVA with a degree of hydrolysis of 80% and a molecular weight of 259,000) stabilizer was used, the rigidity of the PVC particles was weak. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 127–134, 1997  相似文献   

18.
Syndiospecific styrene (St) polymerization, catalyzed by the CpTiCl3/methylaluminoxane (MAO) system, was investigated using two different activation procedures. The polymerization parameters included polymerization time, temperature (~25–100°C), ratio of [Al]/[Ti] (~100–1000), and catalyst precursor concentration (~0.5–10.0 × 10?4 mol Ti/L). It was found that adding reactants in the order of (CpTiCl3 + MAO) + St (Injection of Styrene mode) gave much higher monomer conversion rates, higher weight‐average molecular weights, and narrower molecular weight distributions than for the (St + MAO) + CpTiCl3 (Injection of Catalyst mode). The former also yielded significantly higher syndiotacticity fractions. Differential scanning calorimetry measurements showed multiple peaks exhibiting polymorphism in crystalline syndiotactic polystyrene samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1449–1455, 2004  相似文献   

19.
This article exploits the influence of rubber particle size (RPS) and rubber crosslinking on environmental stress cracking resistance (ESCR) of high impact polystyrene (HIPS), with special interest on the influence of small rubber particles fraction. Three commercial HIPS of high ESCR were selected and four batches of HIPS were prepared in‐house, including samples based on high cis and very high viscosity polybutadiene (PB). Their morphologies were analyzed by low angle laser light scattering, optical microscopy, and transmission electron microscopy, and the samples were submitted to flexural ESCR tests with fatty agents. The ESCR to sunflower oil was found to increase with the reduction of the rubber particles fraction smaller than 1–2 micron. Results have also confirmed that an increase in RPS is the key parameter to promote ESCR, although there is limit for RPS to be effective on ESCR improvement. The reduction of small rubber particles fraction in HIPS was achieved by using a high cis PB, that promotes low grafting efficiency of polystyrene onto PB backbone because of the low content of 1,2 vinyl isomer. Besides the ESCR improvements, HIPS with high cis PB showed higher elastic modulus and impact resistance than HIPS containing medium cis PB, which is desired for thickness reduction in food packaging and refrigeration cabinets. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The compatibilization of syndiotactic polystyrene (sPS)/polyamide 6 (PA‐6) blends with maleic anhydride grafted syndiotactic polystyrene (sPS‐g‐MA) as a reactive compatibilizer was investigated. The sPS/PA‐6 blends were in situ compatibilized by a reaction between the maleic anhydride (MA) of sPS‐g‐MA and the amine end group of PA‐6. The occurrence of the chemical reaction was substantiated by the disappearance of a characteristic MA peak from the Fourier transform infrared spectrum. Morphology observations showed that the size of the dispersed PA‐6 domains was significantly reduced and that the interfacial adhesion was much improved by the addition of sPS‐g‐MA. As a result of reactive compatibilization, the impact strengths of the sPS/PA‐6 blends increased with an increase in the sPS‐g‐MA content. The crystallization behaviors of the blends were affected by the compatibilization effect of sPS‐g‐MA. A single melting peak of sPS in the noncompatibilized blend was gradually split into two peaks as the amount of the compatibilizer increased. A single crystallization peak of PA‐6 in the noncompatibilized blend became two peaks with the addition of 3 wt % sPS‐g‐MA. The new peak was a result of the fractionation crystallization. As the amount of sPS‐g‐MA increased, the intensity of the new peak increased, and the original peak nearly disappeared. Finally, the crystallization peak of PA‐6 disappeared with 20 wt % sPS‐g‐MA in the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2502–2506, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号