首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites based on biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and layered silicates were prepared by the melt intercalation method. Nonmodified montmorillonite (MMT) and organo‐modified MMTs (DA‐M, ODA‐M, and LEA‐M) by the protonated ammonium cations of dodecylamine, octadecylamine, and N‐lauryldiethanolamine, respectively, were used as the layered silicates. The comparison of interlayer spacing between clay and PBAT composites with inorganic content 3 wt % measured by X‐ray diffraction (XRD) revealed the formation of intercalated nanocomposites in DA‐M and LEA‐M. In case of PBAT/ODA‐M (3 wt %), no clear peak related to interlayer spacing was observed. From morphological studies using transmission electron microscopy, the ODA‐M was found to be finely and homogeneously dispersed in the matrix polymer, indicating the formation of exfoliated nanocomposite. When ODA‐M content was increased, the XRD peak related to intercalated clay increased. Although the exfoliated ODA‐M (3 wt %) nanocomposite showed a lower tensile modulus than the intercalated DA‐M and LEA‐M (3 wt %) composites, the PBAT/ODA‐M composite with inorganic content 5 wt % showed the highest tensile modulus, strength, and elongation at break among the PBAT composites with inorganic content 5 wt %. Their tensile properties are discussed in relation to the degree of crystallinity of the injection molded samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 386–392, 2005  相似文献   

2.
The mechanical properties and morphological changes of poly(lactic acid) (PLA), polycarbonate (PC), and poly(butylene adipate‐co‐terephthalate) (PBAT) polymer blends were investigated. Several types of blend samples were prepared by reactive processing (RP) with a twin‐screw extruder using dicumyl peroxide (DCP) as a radical initiator. Dynamic mechanical analyses (DMA) of binary polymer blends of PC/PBAT indicated that each component was miscible over a wide range of PC/PBAT mixing ratios. DMA of PLA/PBAT/PC ternary blends revealed that PBAT is miscible with PC even in the case of ternary blend system and the miscibility of PLA and PBAT can also be modified through RP. As a result, the tensile strain and impact strength of the ternary blends was increased considerably through RP, especially for PLA/PBAT/PC = 42/18/40 (wt/wt/wt) with DCP (0.3 phr). Scanning electron microscopy (SEM) analysis of the PLA/PBAT/PC blends revealed many small spherical island phases with a domain size of approximately 0.05–1 μm for RP, whereas it was approximately 10 μm without RP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The biodegradability of poly(butylene adipate‐co‐butylene terephthalate) (PBAT) and PBAT/starch composites with layered silicates prepared by melt intercalation was evaluated with aerobic biodegradability tests in soil and in an aqueous medium containing activated sludge. Nonmodified montmorillonite (MMT) and octadecylamine‐modified montmorillonite (ODA‐M), known to give a microcomposite and an intercalated nanocomposite for PBAT, respectively, were used as layered silicates. After they were buried in the soil for 8 months, the PBAT/MMT microcomposite exhibited a higher weight loss than the control PBAT, whereas the PBAT/ODA‐M nanocomposite showed a lower weight loss instead. Also, the biodegradability test in the aqueous medium, by determining the biochemical oxygen demand, showed that the addition of MMT and/or starch to PBAT promoted biodegradation, whereas the addition of ODA‐M did not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Poly(butylene adipate‐co‐succinate) (PBAS), an aliphatic polyester, is known for its excellent biodegradability, but its physical and mechanical properties are poor. To improve the physical properties, stiff aromatic rings were added to PBAS through transesterification with poly(ethylene terephthalate) (PET). New biodegradable copolyesters were prepared by the intermolecular ester‐exchange reactions between molten PBAS and PET. The transesterification reaction was carried out at 280°C without a catalyst. The newly synthesized copolyesters were characterized with 1H‐NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The mechanical properties were measured with a universal test machine, and the biodegradability was also investigated. By the new peaks appearing in 1H‐NMR spectra of the copolyesters, the occurrence of the transesterification reaction between PBAS and PET was confirmed. A reduction of the melting temperature was observed for the copolyesters. The elongations at break of the new copolyesters increased for all compositions and reaction times, in comparison with PBAS. However, the tensile strength decreased with the induction of terephthalate units in the copolyesters. The biodegradability of the copolyesters also depended on the number of terephthalate units. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3266–3274, 2004  相似文献   

7.
Poly(butylene adipate‐co‐terephthalate) (PBAT) is a biodegradable polymer with high ultimate elongation but low modulus. This work studied the addition of a rigid bio‐based and biodegradable polymer, poly(lactic acid) (PLA), along with organically modified silicate layers as a conceivable means to improve the modulus of PBAT. Blending with PLA would also reduce both the cost of the ultimate blend and its dependence on nonrenewable resources. Compounds of PBAT with PLA and organically modified silicate layers showed significantly improved tensile and flexural strength resulting in enhanced thermomechanical performances compared to neat PBAT. The state of clay dispersion was evaluated using common analytical techniques such as transmission electron microscopy, X‐ray diffraction, and rheometry. The clay platelets were partially dispersed in a PBAT and PLA phase and a large portion of the platelets were located at the interface. The incorporation of organoclay reduced the dispersed phase domain (i.e., PLA) size significantly. The smaller PLA size however, did not translate into better elongational properties. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
It is indispensable to investigate hydrolytic degradation behavior to develop novel (bio)degradable polyesters. Biobased and biodegradable copolyesters poly(butylene adipate‐co ‐butylene furandicarboxylate) (PBAF) and poly(butylene succinate‐co ‐butylene furandicarboxylate) (PBSF) with BF molar fraction (?BF) between 40 and 60% were synthesized in this study. The hydrolytic degradation of film samples was conducted in a pH 7.0 PBS buffer solution at 25 °C. Slight mass loss (1–2%) but significant decrease in intrinsic viscosity (35–44%) was observed after 22 weeks. The apparent hydrolytic degradation rate decreased with increasing ?BF and initial crystallinity. Meanwhile, PBAFs degraded slightly faster than PBSFs with the same composition. The ?BF and crystallinity increased slowly with degradation time, suggesting the aliphatic moiety and the amorphous region are more susceptible to hydrolysis. And high enough tensile properties were retained after hydrolysis degradation, indicating PBAF and PBSF copolyesters are hydrolytically degradable, with tunable hydrolytic degradation rate and good balance between hydrolytic degradability and durability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44674.  相似文献   

9.
10.
Characterization of poly(butylene adipate‐co‐succinate) (PBAS)/poly(butylene terephthalate) (PBT) copolyesters resulting from the intermolecular ester‐exchange reaction between molten PBAS and PBT have been analyzed using 1H‐NMR spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, and total organic carbon lab analyzer. Using the assignment of proton resonance due to homogeneous and heterogeneous dyads, the average block lengths were investigated over the entire range of copolymer composition. A decrease in melting temperature was observed with the increase of a terephthalate unit in the composition. The result of X‐ray diffraction curve matches well with that of average block length and thermal property. When a rich component is crystallized, the poor component is excluded completely in a crystal formation. The biodegradability in copolyesters also depended on the terephthalate unit in the composition and average block length of the aromatic unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 593–608, 1999  相似文献   

11.
Blends of poly(L ‐lactic acid) (PLLA) and poly (butylene terephthalate‐co‐adipate) (PBTA) were prepared at ratios of 50 : 50, 60 : 40, and 80 : 20 by melt blending in a Laboplastomill. Improved mechanical properties were observed in PLLA when it was blended with PBTA, a biodegradable flexible polymer. Irradiation of these blends with an electron beam (EB) in the presence of triallyl isocyanurate (TAIC), a polyfunctional monomer, did not cause any significant improvement in the mechanical properties, although the gel fraction increased with the TAIC level and dose level. Irradiation of the blends without TAIC led to a reduction in the elongation at break (Eb) but did not show a significant effect on the tensile strength. Eb of PBTA was unaffected by EB radiation in the absence of TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
High‐molecular‐weight copolyesters based on poly(butylene terephthalate) as rigid aromatic segments and poly(l‐lactic acid) (PLLA) as degradable aliphatic segments were synthesized via the polycondensation of terephthalic acid, 1,4‐butanediol (BDO), 1,4‐cyclohexanedimethanol (CHDM), and PLLA oligomer. By tailoring the molar ratio of diols (BDO and CHDM), we investigated in detail the effects of the CHDM rigid hexacyclic ring on the synthesis, mechanical properties, thermal stabilities, and degradation behaviors of the copolyesters. With increasing CHDM content, the initial decomposition temperature increased from 282.5 to 322.2°C, and the tensile strength improved by nearly four times, from 5.4 to 19 MPa. When the molar ratio of BDO/CHDM was 95/5, the weight‐average molecular weight of the copolyester was 89,400 g/mol with a polydispersity of 1.96. In addition, hydrolytic degradation results in phosphate buffer solution indicate that the degradation rate of the copolyesters displayed a strong dependency on the temperature and CHDM composition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Utilization of low‐value agricultural waste for polymer composite materials has great environmental and economical benefits. Sunflower head residue (SHR) as an agricultural waste may be used as a reinforcement in polymeric materials because of its fiber characteristics. In this work, composites of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and SHR were prepared via melt‐extrusion compounding. To improve interfacial compatibility, maleic anhydride (MA) grafted PBAT (PBAT‐g‐MA) was prepared and used as a compatibilizer for the PBAT/SHR composites. The effects of the concentrations of SHR and PBAT‐g‐MA on the morphology, mechanical properties, melt rheology, and water resistance of the composites were examined. Interfacial adhesion between phases in the PBAT/SHR composites was enhanced by the introduction PBAT‐g‐MA as interface‐strengthening agent, resulting in improved mechanical properties and moisture resistance of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44644.  相似文献   

14.
Increasing generation and inadequate disposal of waste progressively compromise our environment. Solutions are proposed by the development of biodegradable polymers, that is, for short‐term applications like packaging. The present study focuses on the design and characterization of biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) nanocomposites reinforced by different types of nanoclays. The addition of natural and modified montmorillonite and bentonite to PBAT by melt mixing enhances slightly the thermal stability and increases the crystallization temperature, independently of the fillers' dispersion state. By contrast, storage modulus in dynamic mechanical analysis is increased when adding nanoclay, and improvement is higher for well‐dispersed organomodified fillers. Dispersion states and morphology of the nanocomposites are studied by X‐ray diffraction as well as scanning and transmission electron microscopy. PBAT‐based composites with modified bentonite reveal to show the best performance at room temperature (which is the temperature of interest for potential packaging applications) in comparison with the other investigated nanocomposites.POLYM. COMPOS., 33:2022–2028, 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Recycled poly(ethylene terephthalate) (rPET), obtained mainly from postconsumer bottles, was melt‐mixed with either poly(butylene adipate‐co‐terephthalate) (PBAT) or PBAT plus ultrafine wollastonite (~5 μm) at different weight ratios on a twin‐screw extruder and then injection‐molded. Among the five rPET/PBAT blends (10–50 wt% PBAT) evaluated, the 80/20 wt% rPET/PBAT blend exhibited the highest tensile strength and degree of crystallinity, a slight increase in the tensile strain, and a remarkable increase in the melt flow index, but a lower tensile modulus and thermal stability with respect to the neat rPET. This blend was subsequently filled with four loading levels of wollastonite (10–40 wt%), where the tensile properties (modulus, strain at break, and strength) and thermal stability of the blend were all improved by the addition of wollastonite in a dose‐dependent manner. Based on differential scanning calorimetry analysis, the crystallinity of rPET in the rPET/PBAT/wollastonite composites decreased in the presence of wollastonite, accompanied with a noticeable increase in the glass transition, cold crystallization, and crystallization temperatures, but only a slight change in the melting temperature was noted compared with those of the neat 80/20 wt% blend. Moreover, the addition of wollastonite at 30 wt% or higher showed a strong reduction in the melt dripping of the composites during combustion. J. VINYL ADDIT. TECHNOL., 23:106–116, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
In this paper, two different analytical methods were applied to investigate nonisothermal crystallization behavior of copolyesters prepared by melting transesterification processing from bulk polyesters involving poly (butylene terephthalate) (PBT) and ternary amorphous random copolyester poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PETIS). The results show that the half‐time of crystallization of copolyesters depended on the reaction time and decreased with the content of ternary polyesters in the amorphous segment. The modified Avrami model describes the nonisothermal crystallization kinetics very well. The values of the Avrami exponent range from 2.2503 to 3.7632, and the crystallization kinetics constant ranges from 0.0690 to 0.9358, presenting a mechanism of three‐dimensional spherulitic growth with heterogeneous nucleation. Ozawa analysis, however, failed to describe the nonisothermal crystallization behavior of copolyesters, especially at higher cooling rate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1232–1238, 2003  相似文献   

17.
Blends of poly(ethylene terephthalate) and poly(ethylene‐2,6‐naphthalate) (70 : 30 w/w) were prepared via a melt‐mixing process at 280°C with various mixing times. The melt‐mixed blends were analyzed by magnetic resonance spectroscopy, differential scanning calorimetry, dynamic mechanical measurements, transmission electron microscopy, and tensile tests. The results indicate that the blends mixed for short times had lower extents of transesterification and were miscible to a limited extent. The blends initially show two glass transitions, which approached more closely and merged gradually with increasing mixing time. A mechanical model was used to help understand the glass‐transition behavior. With increasing mixing time, the phase structure of the blends improved, and this led to an increase in the tensile strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Itaconic acid (IA) has potential as a compatibilizing agent in polymeric blends due to its unique chemical characteristics. Sodium hypophosphite (SHP) has been studied as a catalyst in esterifying reactions using multicarboxylic acids. Starch/poly(butylene adipate‐co‐terephthalate) blown films containing IA, with and without SHP, were produced. The film containing IA presented higher tensile strength (8.166 MPa) and elongation (891.473%) than the control film (5.548 MPa and 487.637%, respectively). When SHP was added (sample IA‐SHP), tensile strength increased even more (9.215 MPa); however, elongation (636.821%) was lower than in the IA film. This behavior was attributed to crosslinking between two starch itaconoate molecules intermediated by SHP. The increase in the compatibility between the polymeric phases justified the lower permeability to water vapor of the IA‐SHP films and was responsible for the production of films with a more compact and homogeneous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46629.  相似文献   

19.
We attempted to introduce crosslinking into poly(butylene adipate‐co‐succinate) (PBAS) to improve the properties, such as the mechanical strength and elasticity, by a simple addition of dicumyl peroxide (DCP). Prior to curing, the thermal stability of PBAS was investigated. Above 170°C PBAS was severely degraded, and the degradation could not be successfully stabilized by an antioxidant. The PBAS was effectively crosslinked by DCP, and the gel fraction increased as the DCP content increased. A major structure of the crosslinked PBAS was an ester and aliphatic group. The tensile strength and elongation of PBAS were improved with an increasing content of DCP, but there was little affect on the tear strength. The biodegradability of crosslinked PBAS was not seriously deteriorated. A higher degree of crosslinking gave a lower heat of crystallization and heat of fusion. However, the melt crystallization temperatures of the crosslinked PBAS were higher than that of PBAS. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 637–645, 2001  相似文献   

20.
The effect of the amount of reactive additive and screw speed during extrusion on the morphological characteristics and mechanical performance of recycled poly(ethylene terephthalate)(RPET) was investigated. With an increase in the ethylene–glycidyl methacrylate copolymer (E–GMA) additive content, a gradual increase in the Izod impact strength of the RPET/E–GMA blends was initially recorded. Subsequent increases in the E–GMA content to above 13.5 wt % led to a drastic enhancement in the toughness of the blends. Meanwhile, the density of the blends decreased with increasing amount of the additive E–GMA. The toughness and density of the blends were found to be dependent on the screw rotation speed during the extrusion. In addition, ductile and microporous structures were observed on the Izod impact fracture surfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号