首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磨削过程是由没有固定形状的磨粒在高速和很浅切深的条件下进行的。高速回转的磨粒、结合剂等,同工件表面之间剧烈的摩擦产生大量的热(附着在砂轮表面的切屑也与工件表面产生摩擦热)。同时,磨粒在滑擦、耕犁和切屑形成三个阶段所做的功也大都转化为热。这就是说:磨削时输入的能量大部分转化为热量,因而在磨削区形成高温,最高可达摄氏一千  相似文献   

2.
小砂轮轴向大切深缓进给磨削以较大切深实现了较高的材料去除率,且使用的砂轮直径比常规磨削用砂轮小很多,我们针对这一特点开展了研究。实验通过改变砂轮转速、工件转速和磨削深度等加工参数,对轴向大切深缓进给磨削加工后的砂轮表面进行了形貌观测和磨损分析。分析表明,砂轮各部分的磨损形式与其在磨削过程中所起的作用有关:砂轮端面是磨削加工的主磨削区,磨粒和结合剂主要发生较大程度的磨损;砂轮圆周面主要对已加工表面进行修磨,因而结合剂和磨粒磨损为主要磨损形式;砂轮拐角作为过渡磨削区,承受的磨削力也比较大,而且由于磨粒与结合剂的结合力相对较小,因此易发生磨粒和结合剂的脱落。  相似文献   

3.
磨削高温是限制磨削技术发展的主要瓶颈之一,因而研究磨削过程中产生高温的机理及磨削温度的变化规律十分重要。采用260 mm的单层钎焊有序排布CBN砂轮,对镍基高温合金GH4169进行不同速度下的磨削实验。实验过程中,保持砂轮线速度和工件进给速度的比值不变,从而保持单颗磨粒最大未变形切屑厚度不变,发现比磨削能得到有效控制,磨削温度的上升主要由材料去除率的提高所导致;随着砂轮线速度的增加,磨削弧区热量分配关系发生显著变化,传入工件的能量增加;磨粒排布方式对传入工件的热量有影响,同一磨削工艺参数下,磨粒斜排布的砂轮磨削温度要低于磨粒直排布的砂轮,最佳磨粒排布方案还有待进一步的研究。  相似文献   

4.
热电偶测量磨削区温度时的动态特性   总被引:4,自引:0,他引:4  
一、前言 磨削加工常常作为精密零件加工的最后工序,因此磨削加工后的零件表面质量直接影响到机器的使用寿命。所以国内外不少科技工作者大力开展对磨削加工后零件表面质量的研究。 磨削加工由于其切削速度很高(一般在30米/秒以上),而且其切削刃的形状和分布都很不规则,磨粒又绝大部分为负前角,因此其切削比能要比一般切削加工高10~20倍,这些能量几乎全部转化为热量。由于砂轮的导热性差,切屑质量小,冷却液又较难进入磨削区,  相似文献   

5.
一、砂轮的磨钝磨损过程在磨削过程中,由于砂轮和工件接触区域的机械、化学和热作用,砂轮工作表面状况不断发生变化。这种变化主要包括两个方面: 1、由于磨粒和工件的不断作用,其切削刃受到金属的反抗以及和金属的相互摩擦而逐渐钝化,另外,由于磨粒和工件材料之间的化学亲和作用使金属切屑粘附在磨粒表面,同  相似文献   

6.
结合剂对CBN砂轮的性能影响很大。在结合剂中掺入固体润滑剂,如PTFE(聚四氟乙烯)将有助于减少工件与砂轮接触面间的摩擦,能促进切屑的形成,使砂轮不易被切屑所堵塞,还有助于保持各个磨粒的刃口的锋利性。在韩磨削用CBN砂轮的结合剂中加入325目或更细一点的银粉,将有助于使砂轮工作面所吸收到的磨削热迅速导入基体,藉辐射和空气冷  相似文献   

7.
分析了点磨削加工表面形貌及其精度的几种影响因素.研究发现:砂轮速度和磨削深度对表面粗糙度的影响都可归结为未变形切屑厚度的改变.减小点磨削倾斜角,可以减小未变形切屑厚度,从而得到理想的表面粗糙度.加大磨削深度和轴向进给量可提高材料去除率,但会造成粗糙度增大.这可归结为砂轮有效磨粒数的减少导致工件的表面粗糙度降低.点磨削通过改变倾斜角大小来增加参与磨削的有效磨粒数,保证高材料去除率的同时获得良好表面质量.增加光磨次数和应用倾斜型砂轮都增加了磨粒和工件表面轮廓突峰的接触次数,对于改善表面粗糙度十分有益.  相似文献   

8.
目的 减少磨削镍基合金GH4169过程中砂轮磨损和堵塞现象,提高工件表面质量.方法 采用WA和SG砂轮磨削镍基合金GH4169,通过观察磨削前后砂轮表面微观形貌,研究两种砂轮表面材料粘附、堵塞以及磨粒破碎等主要磨损机制.从磨削力、工件表面形貌、磨削比能3个方面评价两种砂轮的磨削性能,并探究磨削参数对砂轮磨削力、工件表面形貌、磨削比能的影响规律.结果 在去除相同体积材料时,SG砂轮的磨削力较小,所消耗的能量较WA砂轮低21.5%,SG砂轮所加工工件表面的粗糙度明显低于WA砂轮所加工工件表面的粗糙度,两者表面粗糙度差值均在1μm以上.SG砂轮表面材料粘附现象较轻,WA砂轮表面出现了大面积的材料粘附,造成了砂轮堵塞.结论 SG磨粒因内部致密的微小晶粒所决定的微破碎机制,使SG砂轮在磨削镍基合金GH4169过程中保持了锋利的磨削刃,减少了砂轮表面的材料粘附,同时也获得了良好的工件表面质量.另外,SG磨粒较WA磨粒具有更佳的力学性能,使其在去除相同体积材料时所消耗的能量更少.  相似文献   

9.
根据超声振动辅助磨削运动简图,分析了平面磨削时砂轮对工件的相对运动关系.建立了单颗磨粒的切削模型,给出了单颗磨粒相对工件的运动方程和切削速度方程,进而推导了单颗磨粒在磨削区内的振动次数及其在磨削区内的运动路径总长度、净磨削路径总长度的计算公式.分析表明:切向超声振动辅助磨削可以得到更短的切屑,更长的切削路径长度.  相似文献   

10.
砂轮速度对磨削性能的影响提高砂轮速度是高速磨削的中心内容。国内外许多资料均指出,砂轮速度的提高,在单位时间内金属切除量为常数的情况下,将使切屑的平均厚度减小,异致磨削力降低和工件表面光洁度提高,并使砂轮的磨损减小,耐用度提高。如果在增加砂轮速度的同时也增加单位时间金属切除量,直到每颗磨粒的切屑厚度达到原来的厚度甚至更大一些,就可以显著地提高磨削效率。  相似文献   

11.
砂轮修整     
砂轮表面几何形状和表面粗糙度是决定砂轮磨削性能的重要因素。在磨削过程中,由于磨削力和磨削温度等的作用,砂轮工作表面上的磨粒会逐渐地磨钝;同时,由于磨粒不均匀磨损和脱落,使砂轮工作表面失去正确的几何形状;磨削过程中产生的细小切屑还会粘附到工作磨粒的切削刃上或堵塞到砂轮工作表面的空隙中。所有这些  相似文献   

12.
高速钢的高速深磨研究   总被引:2,自引:0,他引:2  
在高速磨床上,采用CBN 砂轮,对高速钢进行了较大磨除率的深磨研究。分析了磨削力比与磨粒切削状态的关系,提出了改变磨削参数以控制磨削力比,减小砂轮磨粒与工件间的摩擦,改善加工表面质量的措施。  相似文献   

13.
低温冷却磨削机理的研究   总被引:1,自引:0,他引:1  
磨削是各种加工材料获得精确尺寸和表面完整性的主要加工方法,但在加工过程中,由于磨削区温度过高,经常导致工件表面热损伤、微裂纹和产生残余拉应力,严重影响工件表面质量和完整性的提高。本文通过采用低温CO2和液态氮为磨削冷却介质,有效地控制磨削区温度。实验结果表明,与干磨削和油冷却磨削相比,液态氮低温冷却磨削力、比磨削能、磨削区温度明显降低,工件表面质量和完整性显著提高,同时明显提高了砂轮的使用寿命和减少了冷却液对环境地污染。  相似文献   

14.
为研究砂轮磨粒排布样式对磨削结构化沟槽表面的影响,使用叶序、错位和阵列3种磨粒有序化排布的砂轮磨削工件平面。首先,建立3种有序化排布的数学模型;其次,根据结构化沟槽表面减阻的特性参数,设计砂轮磨削参数,并使用MATLAB软件进行磨削运动仿真,将仿真结果与理论计算值进行比较;最后,使用磨削试验验证数学模型与仿真结果的可靠性。结果表明:3种磨粒排布有序化的砂轮均能磨削出微沟槽表面,此时相邻两行磨粒的轴向间距分别为0.04 mm(叶序排布)、0.40 mm(错位排布)和0.80 mm(阵列排布),对应的磨削深度均为0.050 0 mm;磨粒阵列和错位排布的砂轮磨削出的沟槽表面更加稳定,但沟槽的参数比未能达到0.200~1.000的要求;磨粒叶序排布的砂轮加工出的沟槽,能满足表面减阻特性的要求。   相似文献   

15.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

16.
cBN砂轮高速磨削镍基高温合金磨削力与比磨削能研究   总被引:1,自引:0,他引:1  
磨削力和比磨削能是磨削过程的两个重要参数,也是制定合理的磨削工艺需要参考的两个重要因素.采用陶瓷结合剂cBN砂轮、电镀cBN砂轮以及单层钎焊cBN砂轮[1]进行了高速磨削GH4169高温合金试验,研究了磨削力、比磨削能与单颗磨粒最大未变形切屑厚度的关系,并在此基础上建立了相应的理论公式.研究结果表明,单层钎焊cBN砂轮...  相似文献   

17.
用小直径砂轮超声振动磨削和普通磨削加工SiC陶瓷零件,对比研究砂轮线速度、工件进给速度、磨削深度和超声振幅对其磨削表面质量的影响。结果表明:与普通磨削相比,超声振动磨削的磨粒轨迹相互交叉叠加,工件表面形貌更均匀,表面质量更好。由于超声振动时的磨粒划痕交叉会使磨粒产生空切削,因而降低了其磨削力,使磨削过程更加稳定。超声振动磨削的表面粗糙度和磨削力随砂轮线速度和超声振幅的增加而降低,随工件进给速度和磨削深度的减小而降低。且砂轮线速度、工件进给速度较小时,超声振动磨削的效果更明显。   相似文献   

18.
金刚石砂轮磨削直线斜边玻璃时,第一个金刚石砂轮的作用是大切深磨削玻璃、奠定玻璃斜边的基础,其后的金刚石砂轮既磨削玻璃又逐步产生更好的表面粗糙度.这也是第一个和第二个金刚石砂轮的粒度级差大于其它金刚石砂轮的粒度级差的原因.金刚石砂轮磨削斜边玻璃的过程还会产生玻璃对玻璃的"滑擦"和"耕犁"作用.相同条件下,不同粒度的金刚石的每个磨粒的平均磨削厚度不同,从而影响玻璃的表面粗糙度.每个金刚石磨粒的平均磨削厚度受诸多因素影响,有很多变量.提高玻璃工件的移动速度和增加砂轮的进给量,可以提高每个金刚石磨粒的平均磨削厚度.  相似文献   

19.
为研究TC4合金在介观尺度下的磨削过程中切屑变形区的应力分布对切屑的形成及磨削工件表面质量的影响,基于热-力耦合理论建立了单颗磨粒磨削理论模型,并利用ABAQUS对磨削过程进行了有限元仿真分析。仿真结果表明:当磨削深度小于0.5μm时,继续减小有利于减小切屑变形区流动应力的变化幅度,从而提高工件质量;与磨粒圆锥角度相比,磨削速度对切屑变形区应力变化影响更为显著,其变化值基本保持在400MPa左右。研究结果对进一步提高工件表面质量及TC4合金的磨削性能奠定了理论基础。  相似文献   

20.
目的从磨削液压力及润滑方面找到减少磨粒磨损、磨削热和降低工件表面粗糙度的方法。方法基于实际情况,将砂轮突出的磨粒分布函数和工件在磨削之前存在的粗糙度函数等效为余弦函数,对陶瓷结合剂CBN砂轮磨削45号钢而产生的流体压力和膜厚进行了分析。结果考虑砂轮和工件的表面粗糙度时,压力波动集中在中心区域,磨削区最大压力和最大膜厚明显增大。在考虑热效应的情况下,当两表面波长相等、幅值同时增大时,最大膜厚及平均膜厚增大,而幅值相等、波长增大时,润滑情况没有改善;当砂轮表面幅值波长相等且变大时,最大膜厚及平均膜厚增大,由此也可以得出当砂轮表面幅值波长不变,工件表面如此变化时结果相同;当两表面幅值和波长不相等且都成倍增大时,最大膜厚及平均膜厚增大。结论膜厚增大利于润滑时,能降低磨削温度,减少磨削烧伤和热变形,降低工件磨削后的表面粗糙度,减少非工作磨粒的磨损,减少砂轮修正次数,延长砂轮寿命。但是膜厚不会无限增大,因为磨削区域并不封闭,在实际工程中可依据此理论来确定最优解,优化磨削过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号