首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Graphene possess extremely high thermal conductivity, and they have been regarded as prominent candidates to be used in thermal management of electronic devices. However, addition of graphene inevitably causes dramatic decrease in electrical insulation, which is generally unacceptable for thermal interface materials(TIMs) in real electronic industry. Developing graphene-based nanocomposites with high thermal conductivity and satisfactory electrical insulation is still a challenging issue. In this study,we developed a novel hybrid nanocomposite by incorporating silica-coated graphene nanoplatelets(Silica@GNPs) with polydimethylsiloxane(PDMS) matrix. The obtained Silica@GNP/PDMS composites showed satisfactory electrical insulation(electrical resistivity of over 10~(13)Ωcm) and high thermal conductivity of 0.497 W m-1K-1, increasing by 155% compared with that of neat PDMS, even higher than that of GNP/PDMS composites. Such high thermal conductivity and satisfactory electrical insulation is mainly attributed to the insulating silica-coating, good compatibility between components, strong interfacial bonding, uniform dispersion, and high-efficiency heat transport pathways. There is great potential for the Silica@GNP/PDMS composites to be used as high-performance TIMs in electronic industry.  相似文献   

2.
Conductive polymer nanocomposites based on carbon nanotubes (CNTs) have wide range of applications in the electronics and energy sectors. For many of these applications, such as the electromagnetic interference (EMI) shielding, high nanofiller loading is typically needed to achieve the desired properties. The high nanofiller concentration deteriorates the composite's tensile strength due to the increase in nanofiller aggregation. In this work, highly conductive CNT/polypropylene (PP) nanocomposite with improved tensile strength was prepared by melt mixing. The effects of CNT content on the processing behavior, microstructure, mechanical and electrical properties of the nanocomposite were investigated. Scanning electron microscopy was used to investigate the composite microstructure. Good level of CNT dispersion with remarkable adhesion at the CNT/PP interface was observed. Based on a theoretical model, the interfacial strength was estimated to be in the range of 36–58 MPa. As a result of this microstructure, significant enhancement in ultimate tensile strength was reported with the increase of CNT content. The tensile strength of the 20 wt.% CNT/PP nanocomposite was 80% higher than that of the unfilled PP. Moreover, and due to the good dispersion of CNT particles, an electrical percolation threshold concentration of 0.93 wt.% (0.5 vol.%) was obtained.  相似文献   

3.
《Advanced Powder Technology》2020,31(5):1957-1962
In recent years, significant research has been focused on the development of carbon nanotube (CNT) reinforced aluminum nanocomposites, which are quickly emerging because of their lightweight, high strength and other mechanical properties. The potential applications of these composites include the automotive and aerospace industries. In this study, powder metallurgy techniques are employed to fabricate aluminum (Al)/CNT nanocomposites with different raw material properties with optimized conditions. We successfully fabricated three different samples, including un-milled Al, un-milled Al with CNT and milled Al with CNT nanocomposites, in the presence of additional CNTs with various experimental conditions using a planetary ball mill. Scanning electron microscopy and field emission scanning electron microscopy are used to evaluate the particle morphology and CNT dispersion. The CNTs are well dispersed on the surface of the fabricated milled Al with CNT nanocomposites than un-milled Al with CNT nanocomposites for milling. The fabricated Al/CNT nanocomposites are processed by a compacting, sintering and rolling process. Vickers hardness measurements are used to characterize the mechanical properties. The hardness of the Al/CNT nanocomposites are improved milled Al with CNT nanocomposite compared other fabricated composites.  相似文献   

4.
Carbon nanotubes (CNTs) demonstrate remarkable electrical, thermal, and mechanical properties, which allow a number of exciting potential applications. In this article, we review the most recent progress in research on the development of CNT–polymer composites, with particular attention to their mechanical and electrical (conductive) properties. Various functionalization and fabrication approaches and their role in the preparation of CNT–polymer composites with improved mechanical and electrical properties are discussed. We tabulate the most recent values of Young's modulus and electrical conductivities for various CNT–polymer composites and compare the effectiveness of different processing techniques. Finally, we give a future outlook for the development of CNT–polymer composites as potential alternative materials for various applications, including flexible electrodes in displays, electronic paper, antistatic coatings, bullet‐proof vests, protective clothing, and high‐performance composites for aircraft and automotive industries.  相似文献   

5.
碳纳米管(Carbon nanotube, CNT)/环氧树脂(Epoxy resin, EP)纳米复合材料中树脂含量、分布、CNT取向及其与树脂间界面结合是制备高性能纳米复合材料的关键因素。为了探究树脂分布和CNT/EP复合材料性能之间的关系,采用浮动催化化学气相沉积法制备的CNT薄膜和EP为原料,通过浸渍、牵伸、清洗和热压固化工艺制备CNT/EP复合薄膜。利用聚焦离子束结合扫描电子显微镜定性表征树脂在复合膜中的分布状态。结果表明,随着树脂含量增加,树脂在复合薄膜表面富集程度增加。在最优工艺条件下制备的纳米复合材料中CNT含量为66.14wt%, 拉伸强度和拉伸模量达到1405 MPa和46.7 GPa。   相似文献   

6.
A solid-state drawing and winding process was done to create thin aligned carbon nanotube (CNT) sheets from CNT arrays. However, waviness and poor packing of CNTs in the sheets are two main weaknesses restricting their reinforcing efficiency in composites. This report proposes a simple press-drawing technique to reduce wavy CNTs and to enhance dense packing of CNTs in the sheets. Non-pressed and pressed CNT/epoxy composites were developed using prepreg processing with a vacuum-assisted system. Effects of pressing on the mechanical properties of the aligned CNT sheets and CNT/epoxy composites were examined. Pressing with distributed loads of 147, 221, and 294 N/m showed a substantial increase in the tensile strength and the elastic modulus of the aligned CNT sheets and their composites. The CNT sheets under a press load of 221 N/m exhibited the best mechanical properties found in this study. With a press load of 221 N/m, the pressed CNT sheet and its composite, respectively, enhanced the tensile strength by 139.1 and 141.9%, and the elastic modulus by 489 and 77.6% when compared with non-pressed ones. The pressed CNT/epoxy composites achieved high tensile strength (526.2 MPa) and elastic modulus (100.2 GPa). Results show that press-drawing is an important step to produce superior CNT sheets for development of high-performance CNT composites.  相似文献   

7.
Polymer composites can be benefited in many ways through the addition of carbon nanotubes (CNT). For instance, CNT can build up a percolated network within the polymer matrix, which results in a composite material with electrical conductivity and piezoresistive characteristics. This has very important implications for the realization of self-stress sensing structural composites. Moreover, the remarkable optical and transport properties of CNT permit to obtain information about the stress state of the composite at different scales. In the present work, the local and global stress response of SWCNT-epoxy composites is characterised by simultaneous Raman spectroscopic and electrical measurements on nanocomposite specimens submitted to different levels of surface strain. Both the Raman G′-band resonance frequency and the electrical resistance of the composite are found to change monotonically with strain until an inflection point is reached at ∼1.5% strain. Increased sensitivity of the piezoresistive network and lower load transfer efficiency occur beyond this strain level, and are considered to be the result of CNT slippage from the polymer. The reversibility of the stress sensitivity of the composites is verified by performing cyclic loading tests. Hysteresis loop are found to develop earlier on the Raman curves as in the resistance curves, which indicates that even at low strain levels, permanent damage is induced in the vicinity of carbon nanotubes. The use of Raman spectroscopy in combination with electrical methods provides a further insight on the stress sensing capabilities of CNT and the factors which affect the sensitivity and reproducibility of this behaviour.  相似文献   

8.
More than 10 years have passed since carbon nanotubes (CNT) have been found during observations by transmission electron microscopy (TEM). Since then, one of the major applications of the CNT is the reinforcements of plastics in processing composite materials, because it was found by experiments that CNT possessed splendid mechanical properties. Various experimental methods are conducted in order to understand the mechanical properties of varieties of CNT and CNT-based composite materials. The systematized data of the past research results of CNT and their nanocomposites are extremely useful to improve processing and design criteria for new nanocomposites in further studies. Before the CNT observations, vapor grown carbon fibers (VGCF) were already utilized for composite applications, although there have been only few experimental data about the mechanical properties of VGCF. The structure of VGCF is similar to that of multi-wall carbon nanotubes (MWCNT), and the major benefit of VGCF is less commercial price. Therefore, this review article overviews the experimental results regarding the various mechanical properties of CNT, VGCF, and their polymer nanocomposites. The experimental methods and results to measure the elastic modulus and strength of CNT and VGCF are first discussed in this article. Secondly, the different surface chemical modifications for CNT and VGCF are reviewed, because the surface chemical modifications play an important role for polymer nanocomposite processing and properties. Thirdly, fracture and fatigue properties of CNT/polymer nanocomposites are reviewed, since these properties are important, especially when these new nanocomposite materials are applied for structural applications.  相似文献   

9.
Polyaniline (PANI)-coated multi-walled carbon nanotubes (PANI-CNTs) were firstly synthesized by in situ polymerization and then incorporated into the PANI matrix by hot pressing to fabricate bulk PANI-CNT/PANI composites. The composites showed homogeneously dispersed CNTs into the PANI matrix with a strong interface interaction. Thermoelectric measurements at room temperature showed a significant enhancement in both the electrical conductivity and Seebeck coefficient with the addition of PANI-CNTs. At the same time, relatively low thermal conductivity was also obtained. The maximum electrical conductivity and Seebeck coefficient of the composites were up to 2.8 × 103 S/m and 21.6 μ/K, respectively, and the maximum figure of merit reached 1.0 × 10?3 more than three orders of magnitude higher than that of neat PANI. This study proposed a novel and effective way to fabricate bulk PANI/CNT composites with enhanced thermoelectric properties.  相似文献   

10.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

11.
Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA–PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.  相似文献   

12.
For practical application of carbon nanotube (CNT)/polymer composites, it is critical to produce the composites at high speed and large scale. In this study, multi-walled carbon nanotubes (MWNTs) with large diameter (∼45 nm) and polyvinyl alcohol (PVA) were used to increase the processing speed of a recently developed spraying winding technique. The effect of the different winding speed and sprayed solution concentration to the performance of the composite films were investigated. The CNT/PVA composites exhibit tensile strength of up to 1 GPa, and modulus of up to 70 GPa, with a CNT weight fraction of 53%. In addition, an electrical conductivity of 747 S/cm was obtained for the CNT/PVA composites. The good mechanical and electrical properties are attributed to the uniform CNTs and PVA matrix integration and the high degree of tube alignment.  相似文献   

13.
Nicalon-fibre-reinforced SiC composites were fabricated by combining polymer solution infiltration (PSI) and chemical vapour infiltration (CVI). Effect of multilayer coating on mechanical properties of the composites was investigated. The coatings consisted of chemically vapour deposited (CVD) C and SiC and were designed to enhance fibre pull-out in the composites. It was found that the flexural strength and fracture toughness of the composites were increased with the number of coating layers and was a maximum for 7 coating layers which consisted of C/SiC/C/SiC/C/SiC/C. Typical flexural strength and fracture toughness of the composites were 300 MPa and 14.5 MPa m1/2, respectively.  相似文献   

14.
Carbon nanotube (CNT) reinforced high-density polyethylene (HDPE) composites were prepared by a melt mixing procedure. The mechanical properties were analyzed using a central composite design where key factors were CNT concentration and sonication temperature during the sample preparation process. The results indicated that the optimum values were 0.8 wt% for the concentration of CNT and 55°C for the sonication temperature. The samples obtained at optimal conditions were systematically studied. Nanoindentation analysis showed an increase of 43% in Vickers hardness of the nanocomposite when compared to pure polymer. The improvement on the mechanical property is related to changes in the thermo-physical and viscoelastic properties of the nanocomposite.  相似文献   

15.
Carbon nanotube/silver (CNT/Ag) nanocomposites include CNT volume fraction up to 10?vol.% were prepared by chemical reduction in solution followed by spark plasma sintering. Multiwalled CNTs underwent surface modifications by acid treatments, the Fourier transform infrared spectroscopy data indicated several functional groups loaded on the CNT surface by acid functionalisation. The acid-treated CNTs were sensitised and activated. Silver was deposited on the surface of the activated CNTs by chemical reduction of alkaline silver nitrate solution at room temperature. The microstructures of the prepared CNT/Ag nanocomposite powders were investigated by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy and X-ray powder diffraction analysis. The results indicated that the produced CNT/Ag nanocomposite powders have coated type morphology. The produced CNT/Ag nanocomposite powders were sintered by spark plasma sintering. It was observed from the microstructure investigations of the sintered materials by HRSEM that the CNTs were distributed in the silver matrix with good homogeneity. The hardness and the tensile properties of the produced CNT/Ag nanocomposites were measured. By increasing the volume fraction of CNTs in the silver matrix, the hardness values increased but the elongation values of the prepared CNT/Ag nanocomposites decreased. In addition, the tensile strength was increased by increasing the CNTs volume fraction up to 7.5?vol.%, but the sample composed of 10?vol.% CNT/Ag was fractured before yielding.  相似文献   

16.
The goal of this work is to develop an inexpensive low‐temperature process that provides polymer‐free, high‐strength, high‐toughness, electrically conducting sheets of reduced graphene oxide (rGO). To develop this process, we have evaluated the mechanical and electrical properties resulting from the application of an ionic bonding agent (Cr3+), a π–π bonding agent comprising pyrene end groups, and their combinations for enhancing the performance of rGO sheets. When only one bonding agent was used, the π–π bonding agent is much more effective than the ionic bonding agent for improving both the mechanical and electrical properties of rGO sheets. However, the successive application of ionic bonding and π–π bonding agents maximizes tensile strength, toughness, long‐term electrical stability in various corrosive solutions, and resistance to mechanical abuse and ultrasonic dissolution. Using a combination of ionic bonding and π–π bonding agents, high tensile strength (821 MPa), high toughness (20 MJ m?3), and electrical conductivity (416 S cm?1) were obtained, as well as remarkable retention of mechanical and electrical properties during ultrasonication and mechanical cycling by both sheet stretch and sheet folding, suggesting high potential for applications in aerospace and flexible electronics.  相似文献   

17.
The present study shows the effect of adding CNT to linear low-density polyethylene (LLDPE) to produce LLDPE/CNT nanocomposite fibers. The LLDPE/CNT fibers were produced by melt extrusion process using a twin-screw extruder, in a controlled temperature from 160 °C to 275 °C. Further, melt extrusion process was followed by drawing of fibers at the room temperature. Three different weight percentages, 0.08, 0.3 and 1 wt.% of CNT were studied for producing nanocomposite fibers. The addition of 1 wt.% CNT in the LLDPE fiber has increased the tensile strength by 38% (350 MPa). The addition of 0.08 and 0.3 wt.% CNT in the fiber matrix has improved the ductility by 87% and 122%, respectively. Similarly, improvement in the toughness was observed by 63% and 105% for LLDPE fibers with 0.08 wt.% and 0.3 wt.% CNT respectively. The increase in the mechanical properties of the composite fibers was attributed to the alignment and distribution of CNT in the LLDPE matrix. The dispersion of CNT in the polymeric matrix has been revealed by SEM. The study shows that the small addition of CNT when properly mixed and aligned will increase the mechanical properties of pristine polymer fibers.  相似文献   

18.
碳纳米管(CNT)具有纳米级直径、大长径比、高强度,同时又具有优异的柔韧性以及良好的化学稳定性,这使得CNT可以成为增强聚合物复合材料的理想填料。然而,由于范德华力相互作用,CNT极难在热塑性基体中形成稳定分散。将CNT表面功能化是有效改善CNT与树脂基体亲和性和实现有效分散的重要手段。综述了CNT功能化的方法,功能化CNT在热塑性基体中的分散研究进展,及其改性后对热塑性基体的电学和力学性能等的影响,最后阐述了目前CNT在聚合物中应用的关键问题。  相似文献   

19.
A surface-draw method to fabricate recyclable carbon nanotube/polyvinyl butyral (CNT/PVB) composite fibers is reported. This method is effective for both single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube. The CNT mass content of CNT/PVB composite fibers can vary from 0 to 80 wt.%, which is higher than most CNT/polymer composites reported to date. The diameter of the composite fibers can be controlled in the range of 10-100 μm, with essentially unlimited draw length. The composite fibers with 7.4 wt.% SWCNTs showed optimal tensile properties. Compared with pure PVB fibers, the tensile strength, failure strain, and elastic modulus of the composite fiber have improved about 127%, 27%, and 73%, respectively. In addition, SWCNT/PVB composites with 66.7 wt.% SWCNTs have the highest conductivity of 42.9 S m−1. More importantly, the major benefit is the “greenness” of the method, which involves environment friendly ethanol-water solvent with no functionalization of the nanotube required, and only simple apparatus are needed. The CNT/PVB composite fibers obtained can be dissolved in ethanol solution and reformed with the surface draw method without any additional treatment; and the material properties after recycle is comparable to those fabricated in the first round.  相似文献   

20.

PTFE/GF(glass fiber) composites are widely applied in high-frequency printed circuit board (PCB) substrate materials due to the excellent dielectric properties of PTFE and the low thermal expansion coefficient of GF. However, the poor interface compatibility between PTFE and GF affects the performance of the composite substrates. In this study, tetraethyl orthosilicate (TEOS) was used as the silicon source, and polydimethylsiloxane (PDMS) was the organic precursor to modify the surface of GF through the sol–gel method to promote the interface compatibility of GF and PTFE. The modified GF noted T-GF was filled in PTFE to prepare PTFE/T-GF composites. SEM, FTIR, XPS, and contact angle confirmed that organic–inorganic hybrids were successfully loaded on GF's surface. Moreover, compared with PTFE/GF and the conventional coupling agent modified GF filled PTFE composites, the PTFE/T-GF exhibited improved dielectric constant (2.305), decreased dielectric loss (9.08E?4), higher bending strength (21.45 MPa) and bending modulus (522 MPa), better thermal conductivity (0.268 W/m*K) and lower CTE (70 ppm/°C), making it has promising application as the substrate materials for high frequency PCB.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号