首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZrO2 powders have been ground by ball mill grinder to achieve the particle size down to 10 nm. Typical defects introduced during ball mill grinding have been studied by positron annihilation lifetime measurement technique and coincidence Doppler broadened positron annihilation radiation spectroscopic technique. Coincidence Doppler broadened positron annihilation spectra for ball mill ground and unground ZrO2 samples have been analyzed by constructing ratio curve with defects free Al single crystal. Results indicate an increase of cation defects in ZrO2 samples due to the reduction of particle size by the ball mill grinding process.  相似文献   

2.
Mechanical alloying process, as a solid-state technique, is a very useful method for fabrication of high melting point compounds like metal carbides and nitrides, which additionally have nanocrystalline structure with improved properties. In this work the development of several carbides including iron, aluminium and silicon carbides by the mechanical alloying process and the effect of subsequent heat treatment were investigated. Mixtures of elemental powders of Fe–C, Si–C and Al–C were mechanically alloyed, nominally at room temperature using a laboratory planetary ball mill. Structural changes of samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the aluminium carbide (Al4C3) could not be synthesized by mechanical alloying process alone, even after long milling times. A suitable subsequent heat treatment was required to allow Al–C reaction to take place kinetically. In contrast mechanical alloying of Fe–C as well as Si–C systems directly led to the formation of Fe3C and SiC carbides after sufficient milling time. In all cases the end product had a nanosized structure.  相似文献   

3.
Fine BaZrO3 and BaHfO3 powders have been prepared by a microwave-assisted hydrothermal (MWHT) process. The powders have been characterized by x-ray diffraction and scanning electron microscopy, and their particle size distribution has been assessed from dynamic light scattering data. The results indicate that microwave processing during hydrothermal synthesis notably reduces the average particle size of the resulting powder and ensures a narrower particle size distribution. BaHfO3 particles prepared under the optimal MWHT synthesis conditions are predominantly spherical in shape and uniform in size, with an average size (1.2 μm) a factor of 2.5 smaller in comparison with particles prepared by a conventional hydrothermal process (2.9 μm).  相似文献   

4.
Al-substituted M-type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.  相似文献   

5.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

6.
Nine different reduction techniques were evaluated for reducing Si-Ge chill cast alloys. Planetary ball milling with agate vessels and balls proved best for producing large quantities of high purity Si-Ge alloy powders. With the planetary ball mill Si-rich alloys were more difficult to reduce than Ge-rich alloys and the addition of dopant (boron or phosphorus) decreased the grinding time necessary for comparable particle size distributions.  相似文献   

7.
We report high-energy milling of macrocrystalline nonstoichiometric cubic vanadium monoxide (VO y ) powder in a planetary ball mill lined with stabilized zirconia. The results indicate that milling of macrocrystalline VO y powder at 500 rpm for more than 2 h considerably broadens diffraction line profiles, with no changes in the crystal structure of the vanadium monoxide, VO1.00. Microstructural examination of vanadium monoxide powder by high-resolution scanning electron microscopy and X-ray diffraction indicates that high-energy ball milling can be used to produce vanadium monoxide powder with an average crystallite size within 23 nm.  相似文献   

8.
The effect of preliminary mechanical activation of Al(OH)3 on its solid-state reaction with Li2CO3 at temperatures above 800°C has been studied by thermogravimetry, X-ray diffraction, in situ X-ray diffraction, electron microscopy, and specific surface area and particle size measurements. The results demonstrate that preliminary mechanical activation of Al(OH)3 in an AGO-2 planetary mill at 40g for 1 min allows phase-pure γ-LiAlO2 to be obtained. The composition of the lithium aluminates resulting from mechanical activation and heat treatment depends on the phase composition of the aluminum oxides resulting from the thermal decomposition of Al(OH)3. The particle size and specific surface area of the forming γ-LiAlO2 have been determined.  相似文献   

9.
Co80Ni20 powder mixture was mechanically alloyed by high-energy planetary ball milling, starting from elemental Co and Ni metal powders. The morphological, microstructural, thermal and magnetic properties of the milled powders were characterised respectively by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and vibratory sample magnetometry. In addition to a highly disordered phase, two face-centred cubic (FCC) and hexagonal close-packed (HCP), solid solutions, FCC Co(Ni), FCC Ni(Co) and HCP Co(Ni), are observed after 3 h of milling. Their grain sizes decrease with increase in milling time attaining, at 48 h of milling, 12 nm, 25 nm and 10 nm, respectively. Beyond a certain milling time, no further refinement of the microstructure occurs and the morphological equilibrium is usually given by a bimodal particle size distribution. Magnetic measurements of the milled Co80Ni20 alloy powder exhibit a soft ferromagnetic character where the magnetic parameters are sensitive to the milling time mainly due to the particle size refinement as well as the formation of Co(Ni) and Ni(Co) solid solutions. Both the saturation magnetisation ( M s) and coercivity ( H c) were found to decrease with milling time, attaining the values of M s = 126 emu/g and H c = 60 Oe after 48 h of milling.  相似文献   

10.
Boron carbide nanoparticles were produced using commercially available boron carbide powder (0·8 μm). Mechanical milling was used to synthesize Al nanostructured powder in a planetary ball-mill under argon atmosphere up to 20 h. The same process was applied for Al–4 wt % B4C nanocomposite powders to explore the role of nanosize reinforcements on mechanical milling stages. Scanning electron microscopy (SEM) analysis as well as apparent density measurements were used to optimize the milling time needed for completion of the mechanical milling process. The results show that the addition of boron carbide particles accelerate the milling process, leading to a faster work hardening rate and fracture of aluminum matrix. FE-SEM images show that distribution of boron carbide particles in aluminum matrix reaches a full homogeneity when steady state takes place. The better distribution of reinforcement throughout the matrix would increase hardness of the powder. To study the compressibility of milled powder, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles. For better distribution of reinforcement throughout the matrix, r, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles.  相似文献   

11.
High-energy milling of Al2O3 with hardened steel milling media has confirmed that nanocrystalline powders are readily formed. At a ball to charge mass-ratio of 20:1, the crystallite size falls below 30 nm in just 2 h and below 15 nm in 4 h. The as-milled powders are contaminated with Fe which increases linearly with increased milling time, reaching ∼10 wt% after 16 h. The HCl leaching process of Karagedov and Lyakhov [Karagedov and Lyakhov (1999) Nanostruct Mater 11(5):559] was found to remove a large proportion of the Fe, but residual Fe was found with XRF analysis. Milled and leached samples show significant sintering temperature depression to approximately 1100 °C and produce sintered densities greater than 94% without the application of pressure. Milling induced lattice expansion of the Al2O3 is observed which we posit to be due to defect formation rather than Fe absorption. The respective roles of small crystallite size and lattice defects in reducing the sintering temperature are discussed.  相似文献   

12.
A novel spray co-precipitation method was adopted to synthesize well dispersed nanocrystalline Y2O3 powders for transparent ceramics. Several analytic techniques such as XRD, SEM, BET and UV–Vis–NIR spectrophotometer were used to determine the properties of coprecipitated powders, and the microstructure and optical properties of as-fabricated ceramics. The influences of the aging time on powders and ceramics were systematically investigated. Precursors were completely reached to yield the Y2O3 phase after being calcined at 1250 °C in air. The calcined Y2O3 powders exhibited an approximately spherical morphology with narrow size distribution and weak agglomeration, with mean particle size of ~140 nm. The co-precipitated nanopowders with an aging time of 12 h exhibited the best sintering activity due to the low agglomeration, and the in-line transmittance of Y2O3 ceramic sintered at 1800 °C for 8 h in vacuum reached to 77.2% at 1064 nm (1 mm thickness).  相似文献   

13.
Nanocrystalline ytterbia powders have been synthesized using different precursors prepared by precipitation from nitrate solutions: ytterbium carbonates, oxalates, and hydroxides. The powders have been characterized by X-ray diffraction and scanning electron microscopy. The nature of the precursor has no effect on the crystallization temperature of ytterbia but influences its microstructure. The particles range in shape from spherical to platelike. The average crystallite size of the Yb2O3 powders is 20–25 nm. Raising the heat-treatment temperature from 600 to 1000°C increases the crystallite size to 33–46 nm. The highest thermal stability is offered by the ytterbia powders prepared through carbonate decomposition.  相似文献   

14.
In the present work, synthesis of nanocrystalline LaFeO3 by using a mechanochemical activation (ball milling) method with oxide precursors (La2 O 3 and Fe2 O 3) at low temperature is discussed. The thermal and X-ray diffraction studies were used to analyze the formation of intermediate phases during the growth of LaFeO3. The single crystallographic phase of LaFeO3 was confirmed using X-ray diffraction analysis. The detailed structural characteristics of the nanocrystalline LaFeO3 powders were studied by the Rietveld refinement using the FullProff program. Field emission scanning electron microscopy (FESEM) and AFM study revealed the formation of spherical morphology of the nanoparticles. TEM images confirm the formation of homogeneously distributed nanoparticles with their average particle size of about 36 nm. The magnetic measurements were carried on the as-prepared powder, both as a function of temperature and magnetic field. Results of field-cooled (FC) and zero-field-cooled (ZFC) magnetic measurements point out to the existence of spin glass (SG) phases. The exchange bias phenomenon at zero fields cooled is found in hysteresis loop measurements at low temperature.  相似文献   

15.
The present paper focuses on methods of further improving the flux pinning and critical current density of disk-shaped MgB2 bulk superconductors by adding excess Mg metal in combination with an optimum silver content and optimized processing conditions. Bulk MgB2 samples were produced by in situ solid-state reaction in Ar gas ambient using high purity commercial powders of Mg metal and 1.5 wt% carbon-coated amorphous B powders mixed in a fixed ratio of Mg/B = 1.1:2. Further, 4 wt% silver was added to improve flux pinning as well as mechanical performance of the bulk MgB2 material. The magnetization measurements confirmed a sharp superconducting transition with Tc,onset at around 37 K, which is only by 1 K lower than in bulk MgB2 material produced without carbon-coated amorphous boron. The critical current density (Jc) values significantly improved in the MgB2 material with 4 wt% of silver and 1.5 wt% of carbon-coated amorphous boron, sintered at 775 °C for 3 h. At 20 K, this sample showed Jc at around 500 and 350 kA/cm2 in the self-field and 1 T, respectively, which makes it suitable for several industrial applications.  相似文献   

16.
Results concerning the magnetic, magnetostrictive, structural, morphological, and topological properties of amorphous and nanocrystalline Fe 73.5Cu 1Nb 3Si 15.5 B 7 thin films deposited using the high power impulse magnetron sputtering (HiPIMS) technique are reported. In as-deposited state, the samples are amorphous, the nanocrystalline state being achieved for samples isothermally annealed at adequate temperatures, in an electric furnace. For the optimum annealing temperature (475 °C), a decrease by about 70 % for the coercive magnetic field (50 A/m) and up to 1 order of magnitude for the saturation magnetostriction (~1×10?6), compared to the as-deposited state, was obtained. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) results for samples thermally treated at 475 °C revealed a 53.6 % crystalline volume fraction of α-Fe(Si) nanograins with an average size of about 15 nm and a Si content of 10.78 %, uniformly dispersed in a residual amorphous matrix. Using the saturation magnetostriction values determined using the cantilever deflection method and the crystalline volume fraction of α-Fe(Si) nanograins, the contribution of crystalline phase to the saturation magnetostriction was also determined.  相似文献   

17.
Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.  相似文献   

18.
Producing nanostructured materials through metastable phases is interesting in the field of ceramic materials. Metastable phases can be obtained by the Atmospheric Plasma Spray (APS) technique which, is a well-known technique to produce coatings. The initial powders are melted during the spraying obtaining a homogenized phase due to their solubility in the liquid state. Afterwards, the molten droplets are quenched in a cooled medium, producing the sought metastable phases. Finally, during material consolidation, the metastable structure evolves due to a dual structure. A suppression of the grain growth is produced as a consequence of the immiscibility of both phases in the solid state. Due to their small grain size and uniform structure, these nanostructured materials exhibit very interesting properties such as higher hardness and toughness. The aim of this research has been to produce nanostructured Al2O3–TiO2 ceramic powders through APS + quenching route, starting from commercially available micron-sized powders. A complete characterization of the obtained structures using XRD, SEM, FESEM and EDS has been carried out in the Thermal Spray Center (CPT) of the University of Barcelona.  相似文献   

19.
The structural transformations accompanying the mechanochemical synthesis of fine-particle γ-LiAlO2 have been studied by 6Li and 27Al NMR and in situ X-ray diffraction. Mechanical activation of a mixture of aluminum hydroxide and lithium carbonate in an AGO-2 planetary mill results not only in size reduction, intermixing, and partial amorphization of the starting materials but also in the mechanochemical synthesis of a carbonate form of aluminum lithium hydroxide. Subsequent heat treatment of the mechanically activated mixture leads to the release of water and carbon dioxide molecules and the formation of an X-ray amorphous phase containing aluminum in octahedral and tetrahedral oxygen coordination. The X-ray amorphous material converts to gamma lithium aluminate through an intermediate phase.  相似文献   

20.
A comparison of the efficiency of three different synthetic routes viz. sol-gel method involving templating, mechanochemical synthesis and combustion synthesis for the production of nanostructured TiO2, is reported. In the sol-gel method, nanocrystalline TiO2 is produced when titanium tetraisopropoxide is templated onto dodecylamine which forms the liquid crystalline hexagonal structure and the template is then extracted using 1:1 solution of ethanol-hydrochloric acid mixture. Mechanochemical synthesis of nanocrystalline TiO2 involved mechanical milling of stoichiometric amounts of titanium and cupric oxide in a planetary ball mill using stainless steel vial with wear resistant stainless steel balls. Nanocrystalline TiO2 is produced by the combustion reaction involving titanyl nitrate and fuels like glycine and citric acid. Nanostructured TiO2 with an average particle size of ∼ 14 nm is produced by the sol-gel method whereas the mechanochemical reaction between titanium and cupric oxide resulted in the formation of nanocrystalline TiO2 with an average particle size of ∼20 nm after 12 h of milling. On the other hand, combustion synthesis resulted in the formation of nanocrystalline TiO2 with an average particle size of less than ∼50 nm. The microstructures of nanocrystalline TiO2 produced by the above three methods are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号