首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Na0.5Bi4.5?x Eu x Ti4O15 (NBT- x Eu3+) ceramics with x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT-0.25Eu3+ ceramics show the strongest red and orange emissions corresponding to the 5D07F2 (617 nm) and 5D07F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu3+ distinctly increased the Curie temperature (T C ) of NBT- x Eu3+ ceramics from 640°C to 711°C as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in high-temperature range originates from the conducting electrons from the ionization of oxygen vacancies. High T C and low tanδ makes Eu3+-doped NBTceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration.  相似文献   

2.
We have studied the optical absorption, luminescence, and electron paramagnetic resonance of EuF3- and EuF2-activated fluorohafnate glasses. The glasses prepared with EuF2 contain both di- and trivalent europium. The fraction of divalent europium clusters in the glass host decreases with decreasing EuF2 concentration. Eu2+ luminescence in the fluorohafnate glasses is quenched, which is due the overlap of Eu2+ excited state levels with the conduction band of the glass, resulting in nonradiative relaxation through Hf3+ levels in the conduction band. The Eu3+ luminescence spectra contain lines corresponding to transitions from several levels of the 5D multiplet to levels of the 7F multiplet. The relationship between transitions from different 5D levels depends on europium concentration and temperature.  相似文献   

3.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

4.
Nanocrystalline Y1 ? x ? y Gd x Eu y PO4 phosphors have been prepared via precipitation from aqueous solutions. From their luminescence and excitation spectra, the intensity ratio I 615/I 594 of the Eu3+ luminescence bands corresponding to electric dipole and magnetic dipole transitions has been determined as a function of Gd3+ content. The critical concentration and effective energy transfer radius in Y1 ? x ? y Gd x Eu y PO4 have been evaluated. Excitation of Gd3+8 S J ?6 D J and 8 S J ?6 J J transitions to Eu3+ luminescence excitation levels in Y0.99 ? x Gd x Eu0.01PO4 involves efficient energy transfer. Under 250-nm excitation, the Eu3+ luminescence yield in Y0.99 ? x Gd x Eu0.01PO4 is a factor of 2.5–3 higher than that in Y0.99Eu0.01PO4.  相似文献   

5.
Colloidal zinc sulfide solutions have been prepared by reacting zinc trifluoroacetate and thioacetamide in methyl methacrylate as a reaction medium, and europium and terbium salts have been added to the solution. Using methyl methacrylate block polymerization, we have synthesized PMMA/ZnS, PMMA/ZnS:Eu(III), PMMA/ZnS:Tb(III), and PMMA/ZnS:Eu(III),Tb(III) composites. The luminescence of the composites is due to charge recombination at energy levels of structural defects and impurities in ZnS and also to 5D07F j and 5D47F j electronic transitions of the Eu3+ and Tb3+ ions. It depends on the composition and structure of the composites, excitation wavelength, and other factors. The mutual effects of the ZnS and the Eu3+ and Tb3+ ions show up as changes in the position and relative intensity of luminescence bands in the spectra of the composites.  相似文献   

6.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

7.
New red emitting phosphors, Ca3(VO4)2:Eu3+,Bi3+, Ca3((P,V)O4)2:Eu3+ were synthesized by low temperature solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy, photoluminescence spectra and Fourier transform infrared spectroscopy. The results show that the red emission located at about 613 nm was ascribed to 5 D 0-7 F 2 transition of Eu3+. The effect of by Bi doping and by P doping was also investigated systematically.  相似文献   

8.
Sols were prepared by reacting yttrium, europium, and terbium trifluoroacetates with thioacetamide in ethyl acetate. The Eu3+ and Tb3+ concentrations in the sols were 0.10 to 10 wt % relative to yttrium, which corresponded to 0.061 (0.059) to 6.1 (5.9) at % Eu (Tb). The sols were converted into a gel-like state by slowly evaporating the solvent. After ripening, the gels were heat-treated at a temperature of 800°C. X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and IR spectroscopy results showed that the resultant composites consisted predominantly of a mixture of Y2O3 and YOF. The Eu3+ and Tb3+ ions were shown to substitute for Y3+ ions in the crystal lattices of the yttrium oxide and yttrium oxyfluoride. The formation of the (Eu0.6Y0.4)2O3, Eu2O3, and EuOF phases was demonstrated. We determined the types and parameters of the crystal lattices of the synthesized materials in relation to activator concentrations. The luminescence of the composites is due to the 5 D 07 F j and 5 D 47 F j electronic transitions of the Eu3+ and Tb3+ ions and depends on the host and activator compositions, the excitation wavelength, and other factors.  相似文献   

9.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

10.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

11.
BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d 5/2) and Eu2+(3d 3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f 65d 1 → 4f 7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.  相似文献   

12.
Cadmium sulfide was prepared by colloidal synthesis in methyl methacrylate (MMA). Europium and terbium salts were added to the colloidal solutions. Using MMA radical polymerization, we synthesized PMMA/CdS:Eu(III), PMMA/CdS:Tb(III), and PMMA/CdS:Eu(III):Tb(III) luminescent composites. Their luminescence is due to defects in the CdS crystals and the 5 D о → 7Fj and 5 D 4 7 F j electronic transitions of the Eu3+ and Tb3+ ions, respectively. It depends on the composition of the materials, complexation on the surface of the colloidal particles, heat treatment time during synthesis, excitation wavelength, and other factors.  相似文献   

13.
Stable BiCl3-containing solutions of phosphorus oxychloride, activated with UO 2 2+ and Nd3+ ions, can be prepared only in the presence of another Lewis acid MCl x . The electronic absorption spectra of the liquids prepared and the decay times of the Nd3+ luminescence are characteristic of individual solutions based on POCl3-MCl x . The radiation-chemical yield of Nd3+ in the excited state 4 F 3/2 in POCl3-BiCl3-MCl x -235UO 2 2+ -Nd3+ solutions upon homogeneous excitation with uranium α-particles is lower than in POCl3-MCl x -235UO 2 2+ -Nd3+ solutions at comparable component concentrations. Apparently, Bi3+ in solutions based on the POCl3-BiCl3-MCl x system is not incorporated in neodymium- and/or uranyl-containing complexes and remains in the matrix.  相似文献   

14.
BaI2:Eu2+,Eu3+ powders have been prepared by heat-treating BaCO3:Eu3+ precursor powders of various morphologies in an iodinating agent atmosphere and their structural properties, morphology, optical absorption, and luminescence have been studied. The results demonstrate that the powders thus prepared consist of a mixture of crystalline hydrates of various compositions, dominated by BaI2 ? 2Н2О (sp. gr. C2/c), and that the Eu2+: Eu3+ ratio in the powders is determined by the morphology of the precursor.  相似文献   

15.
Novel LiBaPO4:Bi3+ yellow-emitting phosphor is synthesized by high temperature solid-state reaction method in air. With excitation 260 nm, LiBaPO4:Bi3+ phosphor emits yellow light with the chromaticity coordinate (0.4272, 0.4657) and color rendering index 77.7. Emission band peaking at ~?588 nm of LiBaPO4:Bi3+ phosphor in the range of 400–790 nm is attributed to the 3P11S0 electron transition of Bi3+ ion. Excitation band monitored at 588 nm in the range of 220–300 nm is assigned to the 1S03P1 electron transition of Bi3+ ion. The optimal Bi3+ ion concentration in LiBaPO4:Bi3+ phosphor is ~?1.0 mol%. Time resolved spectra and fluorescence lifetime data confirm that there is only Bi3+ ion luminous center in LiBaPO4:Bi3+ phosphor. The luminous mechanism is analyzed by configurational coordinate diagram of Bi3+ ion. The experiment results are helpful to develop other new Bi3+-doped optical materials for solid-state lighting.  相似文献   

16.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

17.
A series of K2TiF6:xMn4+ @NaF samples were prepared by the cation exchange method in HF solution. Coating effects of NaF on the fluorescent properties of the samples were discussed. It is interesting that NaF has induced enhancement of luminous efficiency for the samples. Mechanism of NaF induced enhanced luminescence effect was suggested. That is that the enhancement effect of NaF coating is mainly attributed to a suitable local distortion of the crystal field surrounding the Mn4+ activator through doping with NaF. The results indicate that the optimal conditions are x?=?0.07 and wNaNO3?=?2.5 g. Decay lifetime and the photoluminescence quantum yield of the optimal sample are 5.25 ms and 99.19?±?0.03%, respectively. The chromaticity coordinates of the optimal sample are x?=?0.6926, y?=?0.3073. So, the phosphor emits deep red light, which can be applied for blue light-based white LED.  相似文献   

18.
We have studied the photoluminescence spectra and the luminescence magnetic circular polarization (LMCP) spectra in the region of the 4f-4f radiative transition 5D47F6 in the rare earth Tb3+ ion in a Y3Al5O12 garnet matrix. A comparison of the experimental and theoretically calculated LMCP spectra allowed parameters of the odd crystal field component to be determined that removes the prohibition with respect to parity from the 4f-4f transitions in Tb3+ ion in the garnet structure. The energy spectra and wave functions of 5D4 and 7F6 multiplets of Tb3+ ion in a crystal field with the D2 symmetry have been calculated.  相似文献   

19.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

20.
Data are presented on the recombination luminescence of CaI2:Eu2+, CaI2:Gd2+, CaI2:Tl+, CaI2:Pb2+, and CaI2:Mn2+ crystals grown by the Bridgman-Stockbarger method. It follows from their photostimulated luminescence, roentgenoluminescence, and thermostimulated luminescence spectra that the activation of CaI2 with Gd2+, Eu2+, Tl+, Pb2+, and Mn2+ cations, which produce anion defects, leads to the formation of defect complexes which act as electron traps and determine the 90-K photostimulation spectra of the crystals. The observed effect of the nature of the dopant on the photostimulation spectrum indicates that the doped calcium iodide crystals contain near-activator F- and F A -type electron centers. Under x-ray and optical excitation, the trapping levels in the crystals are filled mainly by charge carriers delocalized from hydrogen- and oxygen-containing centers. The activation increases the decay probability of impurity-bound excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号