首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g?1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

2.
In this study, rapeseed oil cake as a precursor was used to prepare activated carbons by chemical activation with sodium carbonate (Na2CO3) at 600 and 800 °C. The activated carbon with the highest surface area of 850 m2 g?1 was produced at 800 °C. The prepared activated carbons were mainly microporous. The activated carbon having the highest surface area was used as an adsorbent for the removal of lead (II) and nickel (II) ions from aqueous solutions. The effects of pH, contact time, and initial ion concentration on the adsorption capacity of the activated carbon were investigated. The kinetic data of adsorption process were studied using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The experimental data were well adapted to the pseudo-second-order model for both tested ions. The adsorption data for both ions were well correlated with Langmuir isotherm. The maximum monolayer adsorption capacities of the activated carbon for the removal of lead (II) and nickel (II) ions were determined as 129.87 and 133.33 mg g?1, respectively.  相似文献   

3.

Fe-Al-Mn nanocomposite has been synthesized by impregnating MnO2 with Fe and Al nitrate aqueous solution for preconcentration and determination of Pb (II), Cd (II) and U (VI) ions from aqueous solution. Fourier Transform Infrared spectroscopy (FTIR), X-Ray-diffraction (XRD) and Scanning electron microscopy coupled with energy dispersive X-ray detector (SEM–EDX) were employed to characterize the as-synthesized nanocomposite. The XRD result indicates that the as-synthesized nanocomposite had a crystal size with rhombohedral structure and size of 30.81 nm. FTIR results confirmed the presence of hydroxyl group and Metal–Oxygen vibration in the adsorbent. A sensitive and simple solid-phase preconcentration procedure for the determination of trace amounts of Pb(II) and Cd(II) ions by FAAS and U(VI) ions by Uv–Vis was developed. The adsorption isotherm was formally described by both Langmuir and Freundlich equation with a maximum adsorption capacity of 12.5 (Pb), 12.8(Cd) and 14.9(U) mg g?1 respectively with preconcentration factor of 15. The limits of detection were 0.09, 0.05 and 0.0097 mg L?1 and the relative standard deviation for ten replicate measurements were 2.47, 0.979 and 2.04%, for Pb (II), Cd(II) and U(VI) ions, respectively. The recovery of Pb(II), Cd(II) and U(VI) ions were found to be 92.7, 91.3, and 81.76%, respectively. On the basis of these findings, the as-synthesized Fe-Al-Mn nanocomposite was successfully applied as a solid phase extraction for preconcentration and determination of Pb(II), Cd(II) and U(VI) ions in aqueous solution.

  相似文献   

4.
The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1–200 mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R2 values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.  相似文献   

5.
In the current study, SiO2/Fe3O4 core–shell nanoparticles functionalized with TiO2, using a simple method and application for removal of Cd(II), Hg(II) and Ni(II) ions from aqueous solution. The structure of the resulting product was confirmed by X-ray diffraction spectrometry, transmission electron microscopy (TEM), pHpzc and Brunauer, Emmett and Teller methods. The average diameter of TiO2/SiO2/Fe3O4 nanoparticles according to TEM was obtained around 48 nm. In batch tests, the effects of pH, initial metal concentration, contact time and temperature were studied. Adsorption of metal ions was studied from both kinetics and equilibrium point of view. Maximum adsorption capacity of Cd(II), Hg(II) and Ni(II) on TiO2/SiO2/Fe3O4 nanoparticles was 670.9, 745.6 and 563.0 mg g?1, respectively. Adsorption–desorption results showed that the reusability of nanoparticles was encouraging. This adsorbent was successfully applied to removal Cd(II), Hg(II) and Ni(II) ions in real samples including tap water, electronic wastewater and medical wastewater.  相似文献   

6.
Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH2) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g−1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.  相似文献   

7.
Diagnostics of nanoagglomerates of hydroxyapatite Ca10(PO4)6(OH)2 and of hierarchic structures based on them by the method of adsorption of tritium-labeled sodium succinate is made. The adsorption kinetics is one-step in the case of hydroxyapatite nanocrystals and two-step in the case of textured hydroxyapatite. The parameters of the S-shaped sorption isotherms are calculated; they are described by the Guggenheim-Fowler-Frumkin equation. The specific surface area of hydroxyapatite nanoagglomerates is 650–700 m2 g?1, which is close to the theoretical density of individual nanocrystals (900 m2 g?1), and the specific surface area of textured hydroxyapatite (macrospheroids) is 250–300 m2 g?1. Adsorption of succinate ions on the surface of hydroxyapatite nanocrystals leads to the formation of a tightly bound monolayer, which may lead to structural rearrangement of the sorbent.  相似文献   

8.
A novel zwitterionic graphene oxide-based adsorbent was first synthesized in a multistep procedure including the successive grafting of bis(2-pyridylmethyl)amino groups (BPED) and 1,3-propanesultone (PS) onto graphene oxide (GO) sheets. Then, the as-prepared materials were used as adsorbent for the removal of metal ions from aqueous solutions. The influence of solution pH, contact time, metal ion concentration, and temperature onto the adsorption capacity of the zwitterionic GO-BPED-PS adsorbent was investigated and compared with the GO-BPED adsorbent. In particular, it was shown that the maximum adsorption capacities of the GO-BPED-PS adsorbent were as high as 4.174 ± 0.098 mmol.g?1 for the Ni(II) ions and 3.902 ± 0.092 mmol.g?1 for the Co(II) ions under optimal experimental conditions (metal ion concentration = 250 mg.L?1, pH = 7 and T = 293 K). In addition, the adsorption behaviors of Ni(II) and Co(II) ions onto both the GO-BPED and GO-BPED-PS adsorbents fitted well with a pseudo-second-order kinetic model and a Jossens isotherm model. Moreover, adsorption thermodynamics of Ni(II) and Co(II) ions have been studied at various temperatures and confirmed the exothermic adsorption nature of the adsorption process onto the GO-BPED-PS adsorbent. Furthermore, the zwitterionic GO-BPED-PS adsorbent retained good adsorption properties after recycling 18 times which is much better than the conventional adsorbents.  相似文献   

9.
This study describes a new approach for the preparation of tannin-immobilized adsorbent by using mesoporous silica bead as the supporting matrix. Bayberry tannin-immobilized mesoporous silica bead (BT–SiO2) was characterized by powder X-ray diffraction to verify the crystallinity, field-emission scanning electron microscopy to observe the surface morphology, and surface area and porosity analyzer to measure the mesoporous porous structure. Subsequently, the adsorption experiments to Cr(III) were applied to evaluate the adsorption performances of BT–SiO2. It was found that the adsorption of Cr(III) onto BT–SiO2 was pH-dependent, and the maximum adsorption capacity was obtained in the pH range of 5.0–5.5. The adsorption capacity was 1.30 mmol g?1 at 303 K and pH 5.5 when the initial concentration of Cr(III) was 2.0 mmol L?1. Based on proton nuclear magnetic resonance (HNMR) analyses, the adsorption mechanism of Cr(III) on BT–SiO2 was proved to be a chelating interaction. The adsorption kinetic data can be well described using pseudo-first-order model and the equilibrium data can be well fitted by the Langmuir isothermal model. Importantly, no bayberry tannin was leached out during the adsorption process and BT–SiO2 can simultaneously remove coexisting metal ions from aqueous solutions. In conclusion, this study provides a new strategy for the preparation of tannin-immobilized adsorbents that are highly effective in removal of heavy metals from aqueous solutions.  相似文献   

10.
Adsorption of La(III) and Ce(III) from aqueous solutions by novel chitosan modified with poly(vinyl alcohol) as a promoter of mechanical and chemical properties and 3-mercaptopropyltrimethoxysilane as a promoter of the functional group was investigated in batch and continuous modes. The FTIR analyses showed that mecapto groups have been successfully added to chitosan/poly(vinyl alcohol). The BET surface area, pore diameter, and pore volume of adsorbents were 1.68?m2 g?1, 2.516?nm, and 0.058?cm3 g?1, respectively. The effects of the operating parameters such as pH, contact time, initial metal ion concentration, adsorbent dosage, and temperature were studied in batch mode operation. Optimum pH was found to be 5. According to the Langmuir model, the maximum adsorption capacities for La(III) and Ce(III) ions were 263.16 and 251.41?mg?g?1, respectively. The thermodynamic study showed that the adsorption process of both metal ions was endothermic and spontaneous favored at the higher temperature. In the column study, the effects of the flow rate and initial concentration were investigated. The maximum adsorption capacities based on the Thomas model for La(III) and Ce(III) ions were 460.94 and 374.83?mg?g?1 at a flow rate of 4?mL min?1 and an initial metal concentration of 300?mg?L?1, respectively.  相似文献   

11.
Chitosan microspheres cross-linked with glutaraldehyde and containing the reactive dye Orange 16 (RO 16) as a chelating agent were obtained by spray drying technique. These microspheres (CHS-RO 16) were characterized by FTIR, TGA, DSC, SEM and EDX analyses, and tested for metal adsorption. The new adsorbent was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary metal solutions. In single metal solutions, the maximum adsorption capacity for Cu(II), obtained by Langmuir model, was close to 1.69 mmol Cu g? 1; this means the double of the adsorption capacity for Cd(II) (i.e. 0.80 mmol Cd g? 1). Adsorption isotherms for binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant competition effect. On the other hand, Cu(II) adsorption hardly changed when the initial concentration of Cd(II) increased: the new adsorbent was selective to Cu(II) against Cd(II). The metal ions were efficiently desorbed from chitosan-RO 16 with aqueous solutions of H2SO4.  相似文献   

12.
In this study, pure TiO2-nanoparticles and TiO2/sewage sludge (TS) as biomass material were synthesised via a sol–gel method. The adsorption potential of nanosized TiO2 and TS for removal of Cd(II) was investigated in a batch system. The prepared adsorbents were characterised using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The XRD analysis showed that pure TiO2 is in amorphous phase before calcination and in anatase phase at annealing temperature of 400 °C. TiO2/sewage sludge that calcined at 400 °C (TS400) was found to be the best adsorbent for cadmium removal from aqueous solution. Kinetic and isotherm studies were carried out by considering the parameters, pH, initial concentration and contact time. The optimum pH value for Cd(II) adsorption onto TS400 was found to be 6. Langmuir isotherm showed better fit than Freundlich isotherm and the maximum adsorption capacity was found to be 29.28 mg/g which is higher than that of many other adsorbents reported in literature. The sorption kinetic data were well fitted with a pseudo-second-order model. These results demonstrated that TS400 was readily prepared and is the promising and effective solid material for the removal of Cd(II) from aqueous solutions.  相似文献   

13.
In this study, the capability of a magnetic composite of oak powder/Fe3O4 (OP/Fe3O4) for the adsorption of lead, cobalt, and nickel ions from aqueous solutions was examined. Characteristics and structure of oak powder (OP) and OP/Fe3O4 magnetic composite were explored by FTIR, SEM, TGA-DTG, VSM, and XRD analysis. The XRD results showed that OP/Fe3O4 magnetic composite and OP were in crystalline form. Kinetic behavior of adsorption process was studied using pseudo-first-order, pseudo-second-order, and Elovich models. Results indicated that the pseudo-second-order model (R2?>?0.999) can better describe the kinetic behavior of the metal adsorption process. Equilibrium behavior of the adsorption process was also tested using Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Scatchard isotherm models. The results revealed that the adsorption equilibrium data for three metals match with the Freundlich isotherm model (R2?>?0.99). This indicates the effectiveness of heterogeneous surfaces in comparison with homogeneous ones in the adsorption process of metal ions. Moreover, the results showed that the adsorption process of metal ions with the OP/Fe3O4 magnetic composite is physical. Finally, negative values of enthalpy and entropy indicated that the process of the metal ion adsorption is spontaneous and exothermic.  相似文献   

14.
This study focuses on the preparation of WO3 oxide nanoparticle/Activated carbon composite (WO3/AC) for Rhodamine B (RhB) adsorption. The prepared samples were characterized using X-Ray Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller surface area (BET), Raman Spectroscopy and Thermogravimetric analyses (ATG-ATD). Adsorption experiments of RhB onto WO3/AC were carried out in a batch reactor and different operational parameters were investigated. The RhB adsorption process was well fitted by pseudo-second-order kinetic and Langmuir isotherm models (1666.67mg.g?1). Moreover, the values of thermodynamic parameters indicate the spontaneous, endothermic and physisorption adsorption nature. Finally, adsorption mechanism was proposed on the basis Raman analyses before and after adsorption.  相似文献   

15.
In this paper, we report a simple aqueous solution based chemical method for preparation of mesoporous γ-Al2O3 which can be used for removal of fluoride ions from water. The synthesized Al2O3 and commercial Al2O3(Grade AD101-F, ACE Manufacturing and Marketing, Baroda, India) were characterized by using powder x-ray diffractometer, N2 adsorption–desorption surface area and pore size analyzer, and high resolution transmission electron microscope. Synthesized Al2O3 contains a wormhole-like mesoporous structure with 358.7 m2 g?1 Brunauer–Emmett–Teller (BET) surface area and 0.8 cm3 g?1 pore volume. Batch adsorption studies were performed to determine the fluoride adsorption capacity of Al2O3. The effect of different parameters such as contact time, initial fluoride concentration, pH, and adsorbent dose was studied to understand the fluoride adsorption behavior of the synthesized Al2O3 under various conditions. The kinetics results showed that the fluoride adsorption on synthesized Al2O3 followed pseudo-second-order kinetics. Adsorption equilibrium data fitted well to the Freundlich equation and indicated multilayer adsorption of fluoride on the surface of Al2O3. Synthesized Al2O3 demonstrated significantly improved fluoride adsorption capacity and faster kinetics than commercial Al2O3.  相似文献   

16.
Nitrophenols (NPs) and their derivatives are highly toxic, mutagenic and bio-refractory pollutants commonly present in natural water resources and industrial wastewater. To remove NPs from water, N-doped graphitic carbon (NGC) and NGC adsorbent containing titanium dioxide (NGC–TiO2) were synthesized by pyrolysis of microcrystalline cellulose and dopamine mixture, and the mixture along with TiO2 at 500°C, respectively. NCG-TiO2 was thoroughly characterized using various analytical techniques. NP adsorption on the NGC–TiO2 adsorbent surface was studied by varying the pH, initial concentration of NP, and adsorbent dose. The results showed that the most efficient adsorption was achieved at pH 3. After 4?h sonication at pH 3, 80% 4-NP adsorption was achieved using NGC–TiO2 compared to 74% with NGC adsorbent. The percentage removal of 4-NP was higher than 3-NP which was also higher than 2,4-DNP using NGC–TiO2. 4-NP adsorption best fitted to the Langmuir isotherm plot with R2 value of 0.9981 and adsorption capacity of 52.91?mg?g?1. The adsorption process of NP was found to follow a pseudo-second-order kinetic model. The rate constant value for the adsorption of 10?4?M 4-NP at pH 3 using 10?mg of NGC–TiO2 adsorbent was found to be 3.76?×?10?5?g.mg?1.min?1  相似文献   

17.
We present a novel way of enhancing the utility of low cost readily available laterite by impregnating it with the α-MnO2 nanorods, thus making a composite material suitable for the removal of As(V) from aqueous media. The composites were synthesized by two methods: (i) ball-milling of a physical blend of laterite with pre-synthesized MnO2; and (ii) in situ formation of MnO2 in the presence of laterite. The BET surface area of composites prepared by both methods was markedly higher compared to un-modified laterite, and the presence of MnO2 in the composite was also confirmed by XRD analysis and TEM microscopy. The adsorption capacity for As(V) was found to be highly pH dependent and the adsorption kinetics followed a pseudo second-order kinetic model. The Langmuir adsorption isotherm was found to be the best model to describe the adsorption equilibrium of As(V) onto un-modified laterite as well both ball-milled and in situ formed composite. The adsorption capacities at room temperature and pH 7.0 were found to be 1.50 mg g?1, 8.93 mg g?1 and 9.70 mg g?1, for un-modified laterite, ball-milled and in situ formed composite, respectively.  相似文献   

18.
Sorption-desorption of water on two hydrated zirconia gels with specific surface areas of about 300 m2g?1 (as determined by nitrogen adsorption) did not change significantly the textural parameters. However, a similar treatment with methanol resulted in a surface area decrease of about 15–20%. Simultaneously, the CBET parameter was found to decrease to approximately one half of its original value.It is shown that the t-plot method for surface area determination can only be applied when the isotherm under study and the standard isotherm have nearly the same value of the CBET parameter.  相似文献   

19.
Titanium dioxide nanocrystals were employed, for the first time, for the sorption of Hg(II) ions from aqueous solutions. The effects of varying parameters such as pH, temperature, initial metal concentration, and contact time on the adsorption process were examined. Adsorption equilibrium was established in 420 min and the maximum adsorption of Hg(II) on the TiO2 was observed to occur at pH 8.0. The adsorption data correlated with Freundlich, Langmuir, Dubinin–Radushkevich (D–R), and Temkin isotherms. The Freundlich isotherm showed the best fit to the equilibrium data. The Pseudo-first order and pseudo-second-order kinetic models were studied to analyze the kinetic data. A second-order kinetic model fit the data with the (k2 = 2.8126 × 10?3 g mg?1min?1, 303 K). The intraparticle diffusion models were applied to ascertain the rate-controlling step. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were calculated which showed an endothermic adsorption process. The equilibrium parameter (RL) indicated that TiO2 nanocrystals are useful for Hg(II) removal from aqueous solutions.  相似文献   

20.
Incineration residues of expired medications (IREMs) were chemically treated (IREM-T) by a combination of mixed salts (CaCl2, MgCl2) and thermal treatments with NaOH. They were characterized and used for simultaneous ammonia and phosphates adsorption from wastewater. Batch experiments were carried out to investigate the effect of contact time, adsorbent dose, initial concentration, pH and temperature. The maximum adsorption capacity for phosphate and ammonium on IREM-T was found to be 24.68 and 34.30?mg?g?1, respectively, at the same initial concentration of 50?mg?L?1 on 5?g?L?1 of IREM-T. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich adsorption models were applied to analyze the adsorption data. The equilibrium data fitted well with the Langmuir isotherm. To examine the adsorption mechanism, pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied to analyze the experimental data. All the linear correlation coefficients of the second-order model were found to be statistically significant, indicating the applicability of this kinetic equation to the adsorption of both phosphate and ammonium ions. This study revealed that IREM-T has the potential to be an efficient adsorbent for simultaneous nutrient removal. The effectiveness of this material was evaluated by applying this process to Algiers urban wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号