首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.  相似文献   

2.
In this paper we discuss an inexpensive solar collector in which the heat storage material is sand or sand mixed with iron filings. The heat is absorbed by the blackened portion of the heat storage material. The heat is withdrawn from the system by water flowing through a network of plastic pipes buried in the heat storage material at an appropriate depth. The large efficiency is obtained when the material is sand mixed with iron filings. It is shown that the efficiency of the system can be judged from the glass cover temperature. As the glass cover temperature decreases, the efficiency of the system increases.  相似文献   

3.
Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a switching fluid with an index of refraction comparable to that of the prismatic structure. Thermal heat can be harvested via extra fluid channels in the solar absorber or directly via the switching fluid near the prisms.The light reducing effect of prismatic structures is demonstrated for a typical day and a season cycle of the Earth around the Sun. The switchability and the light reducing effect are also demonstrated in a prototype solar collector.  相似文献   

4.
Solar air heaters of many types have been developed in India and their performance studied in detail. The application of these air heaters are limited to a few demonstration projects for food dehydration, and space heating. Some of these case studies are described in this paper. For a few cash crops, the potential of solar air heaters for the drying process has been assessed in detail. Space heating by solar air heaters and their use for natural ventilation has also been discussed and results of a theoretical study presented to make out a case for more intensive research in the fields of solar air heater applications in India.  相似文献   

5.
Performance of a double pass solar air collector   总被引:1,自引:0,他引:1  
B.M. Ramani  Ravi Kumar 《Solar Energy》2010,84(11):1929-1937
Double pass counter flow solar air collector with porous material in the second air passage is one of the important and attractive design improvement that has been proposed to improve the thermal performance. This paper presents theoretical and experimental analysis of double pass solar air collector with and without porous material. A mathematical model has been developed based on volumetric heat transfer coefficient. Effects of various parameters on the thermal performance and pressure drop characteristics have been discussed. Comparison of results reveals that the thermal efficiency of double pass solar air collector with porous absorbing material is 20-25% and 30-35% higher than that of double pass solar air collector without porous absorbing material and single pass collector respectively.  相似文献   

6.
The aim of this research is to experimentally study the efficiency of a new-design plate collector used to heat air in a new desalination humidification–dehumidification process. In fact, in such processes, the air solar collectors work at unusual experimental parameters (forced convection, elevated air humidity, high solar irradiation…). At these stressed experimental conditions, few published works are available in literature. Furthermore, the comparison of the efficiency of collectors running with normal air humidity content (about 10–20 g kg−1) and air of elevated humidity (20–50 g kg−1) were not yet published as our knowledge. In the present investigation, a new air solar plate collector was designed and developed for its use in a desalination process. Moreover, a characterization of such collector was performed under different experimental conditions. The effect of different parameters, namely: the solar radiation, the wind velocity, the ambient temperature, the air mass flow rate, the inlet air humidity and temperature, on the collector efficiency was also investigated. The collector was optimized for its use in a new solar desalination process. In fact, the air solar collector was designed in order to lower its economic cost making them applicable for water desalination.  相似文献   

7.
Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85–86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62–68% measured heat recovery efficiency, which is lower than specified.  相似文献   

8.
In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical.  相似文献   

9.
In this paper, an attempt is made to investigate the thermal and electrical performance of a solar photovoltaic thermal (PV/T) air collector. A detailed thermal and electrical model is developed to calculate the thermal and electrical parameters of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, etc. Some corrections are done on heat loss coefficients in order to improve the thermal model of a PV/T air collector. A better electrical model is used to increase the calculations precision of PV/T air collector electrical parameters. Unlike the conventional electrical models used in the previous literature, the electrical model presented in this paper can estimate the electrical parameters of a PV/T air collector such as open-circuit voltage, short-circuit current, maximum power point voltage, and maximum power point current. Further, an analytical expression for the overall energy efficiency of a PV/T air collector is derived in terms of thermal, electrical, design and climatic parameters. A computer simulation program is developed in order to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, parametric studies have been carried out. Since some corrections have been down on thermal and electrical models, it is observed that the thermal and electrical simulation results obtained in this paper is more precise than the one given by the previous literature. It is also found that the thermal efficiency, electrical efficiency and overall energy efficiency of PV/T air collector is about 17.18%, 10.01% and 45%, respectively, for a sample climatic, operating and design parameters.  相似文献   

10.
This paper reports the investigation results on application of the solar assisted air source heat pump systems for hot water production in Hong Kong. A mathematical model of the system is developed to predict its operating performance under specified weather conditions. The optimum flow rate from the load water tank to the condenser is proposed considering both the appropriate outlet water temperature and system performance. The effect of various parameters, including circulation flow rate, solar collector area, tilt angle of solar collector array and initial water temperature in the preheating solar tank is investigated, and the results show that the system performance is governed strongly by the change of circulation flow rate, solar collector area and initial water temperature in the preheating solar tank.  相似文献   

11.
In this report we present a theoretical analysis of a solar thermal collector with a flat plate top reflector. The top reflector extends from the upper edge of the collector, and can be inclined forwards or backwards from vertical according to the seasons. We theoretically predicted the daily solar radiation absorbed on an absorbing plate of the collector throughout the year, which varies considerably with the inclination of both the collector and reflector, and is slightly affected by the ratio of the reflector and collector length. We found the optimum inclination of the collector and reflector for each month at 30°N latitude. An increase in the daily solar radiation absorbed on the absorbing plate over a conventional solar thermal collector would average about 19%, 26% and 33% throughout the year by using the flat plate reflector when the ratio of reflector and collector length is 0.5, 1.0 and 2.0 and both the collector and reflector are adjusted to the proper inclination.  相似文献   

12.
太阳能空气集热采暖系统作为一种简单有效的太阳能应用方式,渐渐引起了世界各国学者的广泛关注。然而,由于太阳能空气采暖的热源是太阳能,建筑室内环境很容易受室外天气影响,这使得建筑的热性能具有不确定性,为了解决上述问题,文中以单片机为控制核心,以温度、太阳辐射照度为输入参数,采用PID方法控制风机启闭及转速,获取最佳的风机运行状态,提高系统的供热效果及效率。  相似文献   

13.
A 450 ft ‘site-built’ air collector was completed in February 1981 in Boston, Massachusetss. The collector uses the Airco/Guardian ‘Passive Solar Glass’ with a selective surface coating on the inner lite of the collector's double glazing. This paper discusses the issues and theory that led to the building of the collector and estimates performance for the system. Preliminary data taken in late winter indicates that the system will perform seasonally as predicted.  相似文献   

14.
Use of a simplified method has been made to calculate the time-dependent thermal performance of various solar domestic hot water systems. to establish the value of solar hot water systems under given economic considerations a thermal analysis was carried out on three basic energy system designs, operating at several locations in the Federal Republic of Germany (F.R.G.) with various solar collectors. It is found that systems design can result in variations up to a factor of two in the per cent solar output. the location and year of operation in the F.R.G. result in variations up to 15 per cent in the solar output. A sensitivity study was also done with respect to all solar collector, systems and user parameters. From this it was found that the dominant effects on the systems performance were due to the collector-dependent parameters.  相似文献   

15.
Energy analysis of a solar air collector with rows of fins   总被引:2,自引:0,他引:2  
The necessity for improving the thermal performances of the solar air collector, for some needs, encouraged us to carry out this study. Initially, to improve the efficiency factor of these solar collectors, we create an increasingly turbulent flow between the absorber and the back wooden plate. For that, we use obstacles of various forms. In this study, we chose rectangular plate fins inserted perpendicular to the flow. The fluid flows out through the interstices between fins in the same row, this allows a good distribution of the fluid and reduces the dead zones. Secondly, and for the same configuration, we undertake a study on the evaluation of the transfer coefficient. The results are compared with those obtained with a solar air collector without fins, using two types of absorbers selective (in coppersun) or not selective (black-painted aluminium).  相似文献   

16.
A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m×2.0 m×0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m2. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002–2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse.  相似文献   

17.
Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.  相似文献   

18.
A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8–0.86 and 0.7–0.75, respectively, when operated under the meteorological conditions of Singapore.  相似文献   

19.
This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of ‘solar cogeneration’ by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage.System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings.The relationship between the solar collector’s area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells.All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices.  相似文献   

20.
A large number of industrial processes demand thermal energy in the temperature range of 80–240 °C. In this temperature range, solar thermal systems have a great scope of application. However, the challenge lies in the integration of a periodic, dilute and variable solar input into a wide variety of industrial processes. Issues in the integration are selection of collectors, working fluid and sizing of components. Application specific configurations are required to be adopted and designed. Analysis presented in this paper lays an emphasis on the component sizing. The same is done by developing a design procedure for a specific configuration. The specific configuration consists of concentrating collectors, pressurized hot water storage and a load heat exchanger. The design procedure follows a methodology called design space approach. In the design space approach a mathematical model is built for generation of the design space. In the generation of the design space, design variables of concern are collector area, storage volume, solar fraction, storage mass flow rate and heat exchanger size. Design space comprises of constant solar fraction curves traced on a collector area versus storage volume diagram. Results of the design variables study demonstrate that a higher maximum storage mass flow rates and a larger heat exchanger size are desired while limiting storage temperature should be as low as possible. An economic optimization is carried out to design the overall system. In economic optimization, total annualized cost of the overall system has been minimized. The proposed methodology is demonstrated through an illustrative example. It has been shown that 23% reduction in the total system cost may be achieved as compared to the existing design. The proposed design tool offers flexibility to the designer in choosing a system configuration on the basis of desired performance and economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号