首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully integrated 10-GHz-band voltage-controlled oscillator (VCO) has been designed and fabricated using commercial 0.18-/spl mu/m CMOS technology. The complementary cross-coupled differential topology is adopted in the design. The measured phase-noise is around -89 dBc/Hz at the offset frequency of 100 kHz from the center frequency of 9.83 GHz, the output frequency tuning range of the fabricated VCO is 1.1 GHz ranging from 9.3 to 10.4 GHz, and the power consumption of the core VCO circuit is 5.8 mW. The design is the first one that adopts the complementary cross-coupled circuit structure for 10-GHz-band oscillators, and whose performances of the VCO are the best ones for 10-GHz-band oscillators, compared with the 10-GHz-band CMOS oscillators reported earlier.  相似文献   

2.
LC-tank oscillators in the 5~6 GHz frequency range have been designed and implemented in a commercial 0.6 μm GaAs MESFET technology. One is a voltage-controlled oscillator (VCO), and the other is an oscillator without a controlling element. The output frequency range of the VCO is from 5.44 to 6.14 GHz, and the measured phase-noise is -101.67 dBc/Hz at an offset frequency of 600 KHz from the 5.44 GHz carrier. The phase-noise of the 6.44 GHz oscillator is -108 dBc/Hz at an offset frequency of 600 KHz, and the phase-noise curve, in the offset frequency range between 100 KHz and 1 MHz, shows a -20 dB/decade slope. These phase-noise characteristics are comparable to, or better than, those of the reported 5~6 GHz-band CMOS oscillators. To our knowledge, this is the first GaAs MESFET-based oscillator which has a cross-coupled differential topology and a capacitive coupling feedback to suppress the up-conversion of 1/f noise. Also, it is first reported that the GaAs MESFET-based oscillator shows 1/f2 phase-noise behavior across the offset frequency range from 100 KHz to 1 MHz  相似文献   

3.
A low phase-noise CMOS VCO with harmonic tuned LC tank   总被引:2,自引:0,他引:2  
This paper presents a phase-noise reduction technique for voltage-controlled oscillators (VCOs) using a harmonic tuned (HT) LC tank. The phase-noise suppression is achieved through almost rectangular-shaped voltage at the switching differential cell, which effectively maximizes the slope of the switching cell output voltage at a zero crossing point. In addition, the proposed technique also suppresses the down-conversion of the noise around the second harmonic frequency by the second harmonic short of the tank. One second HT VCO and two third HT VCOs are designed and implemented to evaluate the concept using a 0.35- and 0.13-/spl mu/m CMOS process. The figure-of-merit (FOM) of the second HT VCO, third HT VCO1, and third HT VCO2 are -180.7, -183.7, and -189.5, respectively. The best FOM performance of the VCO has phase noises of -100.4, -132.0, and -140.8dBc/Hz at 100-kHz, 1-MHz, and 3-MHz offset frequencies at the 2-GHz carrier, respectively. This VCO consumes 3.29 mA from a 1.8-V supply with the silicon area of 500 /spl mu/m/spl times/750 /spl mu/m.  相似文献   

4.
This paper reports on what is believed to be the highest frequency bipolar voltage-controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) so far reported. The W-band VCO is based on a push-push oscillator topology, which employs InP HBT technology with peak fT's and fmax's of 75 and 200 GHz, respectively. The W-band VCO produces a maximum oscillating frequency of 108 GHz and delivers an output power of +0.92 dBm into 50 Ω. The VCO also obtains a tuning bandwidth of 2.73 GHz or 2.6% using a monolithic varactor. A phase noise of -88 dBc/Hz and -109 dBc/Hz is achieved at 1- and 10-MHz offsets, respectively, and is believed to be the lowest phase noise reported for a monolithic W-band VCO. The push-push VCO design approach demonstrated in this work enables higher VCO frequency operation, lower noise performance, and smaller size, which is attractive for millimeter-wave frequency source applications  相似文献   

5.
This paper describes a low-noise, 900-MHz, voltage-controlled oscillator (VCO) fabricated in a 0.6-μm CMOS technology. The VCO consists of four-stage fully differential delay cells performing full switching. It utilizes dual-delay path techniques to achieve high oscillation frequency and obtain a wide tuning range. The VCO operates at 750 MHz to 1.2 GHz, and the tuning range is as large as 50%. The measured results of the phase noise are -101 dBc/Hz at 100-kHz offset and -117 dBc/Hz at 600-kHz offset from the carrier frequency. This value is comparable to that of LC-based integrated oscillators. The oscillator consumes 10 mA from a 3.0-V power supply. A prototype frequency synthesizer with the VCO is also implemented in the same technology, and the measured phase noise of the synthesizer is -113 dSc/Hz at 100-kHz offset  相似文献   

6.
A Q-band 40-GHz GaN monolithic microwave integrated circuit voltage controlled oscillator (VCO) based on AlGaN/GaN high electron mobility transistor technology has been demonstrated. The GaN VCO delivered an output power of +25dBm with phase noise of -92dBc/Hz at 100-KHz offset, and -120dBc/Hz at 1-MHz offset. To the best of our knowledge, this represents the state-of-the-art for GaN VCOs in terms of frequency, output power, and phase noise performance. This work demonstrates the potential for the use of GaN technology for high frequency, high power, and low phase noise frequency sources for military and commercial applications.  相似文献   

7.
This paper describes a phase-locked loop (PLL) based frequency synthesizer. The voltage-controlled oscillator (VCO) utilizing a ring of single-ended current-steering amplifiers (CSA) provides low noise, wide operating frequencies, and operation over a wide range of power supply voltage. A programmable charge pump circuit automatically configures the loop gain and optimizes it over the whole frequency range. The measured PLL frequency ranges are 0.3-165 MHz and 0.3-100 MHz at 5 V and 3 V supplies, respectively (the VCO frequency is twice PLL output). The peak-to-peak jitter is 81 ps (13 ps rms) at 100 MHz. The chip is fabricated with a standard 0.8-μm n-well CMOS process  相似文献   

8.
Balanced voltage-controlled oscillator (VCO) monolithic microwave integrated circuits (MMICs) based on a coupled Colpitt topology with a fully integrated tank are presented utilizing SiGe heterojunction bipolar transistor (HBT) and InGaP/GaAs HBT technologies. Minimum phase noise is obtained for all designs by optimization of the tank circuit including the varactor, maximizing the tank amplitude, and designing the VCO for Class C operation. Fundamental and second harmonic VCOs are evaluated. A minimum phase noise of less than -112 dBc at an output power of 5.5 dBm is achieved at 100-kHz carrier offset and 6.4-GHz oscillation frequency for the fundamental InGaP/GaAs HBT VCO. The second harmonic VCO achieves a minimum measured phase noise of -120 dBc at 100 kHz at 13 GHz. To our best knowledge, this is the lowest reported phase noise to date for a varactor-based VCO with a fully integrated tank. The fundamental frequency SiGe HBT oscillator achieves a phase noise of -108 dBc at 100 kHz at 5 GHz. All MMICs are fabricated in commercial foundry MMIC processes.  相似文献   

9.
Jung  D.Y. Park  C.S. 《Electronics letters》2008,44(10):630-631
A 27 GHz cross-coupled LC voltage controlled oscillator (VCO) using a standard 0.13 mum CMOS technology is presented. The VCO using a high-Q LC resonator with a micro-strip inductor (mu-strip L) provides a phase noise of -113 dBc/Hz at a 1 MHz offset frequency. The figure - of-merit (FoM) is -194.6 dBc/Hz. To obtain high output power, it also uses a common source amplifier as a buffer and it shows the output power of -3.5 dBm at an oscillation frequency of 26.89 GHz. This is believed to be the lowest phase noise and FoM with the highest output power of a millimetre-wave VCO in CMOS technology.  相似文献   

10.
潘玉剑  张晓发  袁乃昌 《电子设计工程》2011,19(19):180-182,186
针对频率源的相噪会恶化采样数据的信噪比,杂散会降低接收机灵敏度,提出了一种低相噪低杂散的设计方法。该方法利用Hittite公司的新推出的集成VCO的锁相环芯片HMC830进行设计.供电部分采用多个低噪声稳压芯片,参考频率源为Pascall公司的OCXO晶振,环路滤波器为无源四阶,使用Hittite PLL Design...  相似文献   

11.
The design of a low-voltage 40-GHz complementary voltage-controlled oscillator (VCO) with 15% frequency tuning range fabricated in 0.13-/spl mu/m partially depleted silicon-on-insulator (SOI) CMOS technology is reported. Technological advantages of SOI over bulk CMOS are demonstrated, and the accumulation MOS (AMOS) varactor limitations on frequency tuning range are addressed. At 1.5-V supply, the VCO core and each output buffer consumes 11.25 mW and 3 mW of power, respectively. The measured phase noise at 40-GHz is -109.73 dBc/Hz at 4-MHz offset from the carrier, and the output power is -8 dBm. VCO performance using high resistivity substrate (/spl sim/300-/spl Omega//spl middot/cm) has the same frequency tuning range but 2 dB better phase noise compared with using low resistivity substrate (10 /spl Omega//spl middot/cm). The VCO occupies a chip area of only 100 /spl mu/m by 100 /spl mu/m (excluding pads).  相似文献   

12.
This paper describes a new three-stage voltage controlled ring oscillator (VCO) based on 0.35???m standard CMOS technology. The VCO was designed for a transmitter operating in the 863?C870?MHz European band for wireless sensor applications. The transmitter is designed for binary frequency-shift keying (BFSK) modulation, communicating a maximum data rate of 20?kb/s. In addition to the VCO, the transmitter combines a BFSK modulator, an up conversion mixer, a power amplifier and an 863?C870?MHz band pass filter. The modulator uses the frequency hopping spread spectrum and it is intended for short range wireless applications, such as wireless sensor networks. The oscillation frequency of the VCO is controlled by a voltage VCTRL. Simulation results of the fully differential VCO with positive feedback show that the estimated power consumption, at desired oscillation frequency and under a supply voltage of 3.3?V, is only 7.48?mW. The proposed VCO exhibits a phase noise lower than ?126?dBc/Hz at 10?MHz offset frequency.  相似文献   

13.
This paper presents a new technique to design high-Q active resonators. The active resonators are then used in the design of low phase-noise oscillators. The proposed new technique uses an amplifier to generate a negative resistance, which compensates for the resonator losses and increases the Q factor. The active resonator using this technique shows a high loaded Q factor of 548.62 from measurement at the fixed 10-GHz resonant frequency. Considerations to design a voltage tunable active resonator is given and measurements show that the loaded Q factors exceed 500 with a 120-MHz tuning range. A low phase-noise free-running and voltage-controlled oscillator (VCO) were designed as an application of the proposed active resonators. The phase noise of the free-running oscillator using the active resonator is -114.36 dBc/Hz at 100-kHz offset, which is 14 dB lower than the phase noise of the passive resonator oscillator. In the case of a VCO using the active resonator, the phase-noise performance is below -110 dBc/Hz over the whole tuning range, which is lower 13 dB compared to the passive resonator VCO. The total dc power consumptions are approximately 500 mW.  相似文献   

14.
提出一种带有开关电流源的电感电容压控振荡器(LC VCO)。该技术通过反馈电容将电感电容压控振荡器的输出耦合到电流源,形成了电流源的开关特性,从而减小了电感电容压控振荡器的相位噪声。提出的电感电容压控振荡器采用华虹 NEC的0.18μm SiGe BiCMOS工艺,工作频率为5.7 GHz,相位噪声为-113.0 dBc/Hz@1MHz,功耗为2.3 mA。在其他性能相同的情况下,提出的电感电容压控振荡器的振荡频率比典型的电感电容压控振荡器的相位噪声小4.5 dB。  相似文献   

15.
Theoretical analysis of low phase noise design of CMOS VCO   总被引:2,自引:0,他引:2  
A theoretical analysis on low phase noise of voltage-controlled oscillators (VCOs) based on complementary cross-coupled LC VCO by 0.35-/spl mu/m complementary metal oxide semiconductor technology is demonstrated. From the procedure of optimization steps, the excess noise factor of the amplifier coming from the active device has been determined. The proposed VCO operates at 2 GHz with phase noise of -116 dBc/Hz at offset frequency 600 kHz. The power consumption is 22.62 mW under 3 V bias with 9.1% frequency tuning. The achievement of low phase noise is also matched with prediction by formula in the frequency domain.  相似文献   

16.
设计并研制了一种新型复合沟道Al0.3Ga0.7N/Al0.05Ga0.95N/GaN HEMT(CC-HEMT)微波单片集成压控振荡器(VCO),且测试了电路的性能.CC-HEMT的栅长为1μm,栅宽为100μm.叉指金属-半导体-金属(MSM)变容二极管被设计用于调谐VCO频率.为提高螺旋电感的Q值,聚酰亚胺介质被插入在电感金属层与外延在蓝宝石上GaN层之间.当CC-HEMT的直流偏置为Vgs=-3V,Vds=6V,变容二极管的调谐电压从5.5V到8.5V时,VCO的频率变化从7.04GHz到7.29GHz,平均输出功率为10dBm,平均功率附加效率为10.4%.当加在变容二极管上电压为6.7V时,测得的相位噪声为-86.25dBc/Hz(在频偏100KHz时)和-108dB/Hz(在频偏1MHz时),这个结果也是整个调谐范围的平均值.据我们所知,这个相位噪声测试结果是文献报道中基于GaN HEMT单片VCO的最好结果.  相似文献   

17.
Voltage controlled oscillators (VCOs) used in portable wireless communications applications, such as cellular telephony, are required to achieve low phase-noise levels while consuming minimal power. This paper presents the design challenges of a VCO with automatic amplitude control, which operates in the 300 MHz to 1.2 GHz frequency range using different external resonators. The VCO phase noise level is -106 dBc/Hz at 100-KHz offset from an 800-MHz carrier, and it consumes 1.6 mA from a 2.7-V power supply. An extensive phase-noise analysis is employed for this VCO design in order to identify the most important noise sources in the circuit and to find the optimum tradeoff between noise performance and power consumption  相似文献   

18.
报道了一种中心频率为2GHz的电感电容(LC)压控振荡器,其谐振回路由微机械可变电容和键合线电感构成。微机械可变电容采用与集成电路兼容的表面微机械工艺制造,在2GHz时其Q值约为32.6,当调节电压从0V增大到12V时,电容量变化范围为25%。通过键合技术将微机械可变电容与有源电路集成在一起,制备了MEMSVCO器件,测试结果表明,载波频率为2.004GHz时,VCO的单边带相位噪声为-103.5dBc/Hz@100kHz,输出功率为12.51dBm。调频范围约为4.8%。  相似文献   

19.
A low power and low phase noise phase-locked loop(PLL) design for low voltage(0.8 V) applications is presented.The voltage controlled oscillator(VCO) operates from a 0.5 V voltage supply,while the other blocks operate from a 0.8 V supply.A differential NMOS-only topology is adopted for the oscillator,a modified precharge topology is applied in the phase-frequency detector(PFD),and a new feedback structure is utilized in the charge pump(CP) for ultra-low voltage applications.The divider adopts the extende...  相似文献   

20.
A 6 GHz voltage controlled oscillator (VCO) optimized for power and noise performance was designed and characterized. This VCO was designed with the negative-resistance (Neg-R) method, utilizing an InGaP/GaAs hetero-junction bipolar transistor in the negative-resistance block. A proper output matching network and a high Q stripe line resonator were used to enhance output power and depress phase noise. Measured central frequency of the VCO was 6.008 GHz. The tuning range was more than 200 MHz. At the central frequency, an output power of 9.8 dBm and phase noise of -122.33 dBc/Hz at 1 MHz offset were achieved, the calculated RF to DC efficiency was about 14%, and the figure of merit was -179.2 dBc/Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号