首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.  相似文献   

2.
The investigation of the surface alignment of liquid crystal (LC) multilayers evaporated on photoaligned polyimide vertical alignment (PI-VA) film was carried out by means of the novel three-dimensional (3D) surface profiler. We report the first use of the surface profiler to visualize a microscopic image of the monolayer arrangement of LC molecules in contact with the surface of photo-treated PI-VA film. The photoinduced anisotropy of partially UV-exposed PI-VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers is indicating the orientational distribution of LC molecules on the treated film. It was found that the periodically photoaligned PI-VA film surface can align an adsorbed LC monolayer and the LC molecular alignment can be extended to the bulk via the epitaxylike LC–LC interaction, i.e. a short-range molecular interaction. With regard to the unexposed PI-VA film surface, noticeable anisotropy in the monolayer alignment was not observed, indicating that the long-range elastic interaction may be responsible for the bulk alignment. The appearance of small droplets in the masked region may be presumably related to the dewetting phenomena.  相似文献   

3.
Huiying Jia 《Thin solid films》2006,496(2):281-287
A substrate for surface-enhanced Raman scattering (SERS) has been developed. Based on the surface-catalyzed reduction of Ag+ by citrate on the silver nanoparticles surface under light irradiation, small silver seeds on a quartz slide can be enlarged. The optical properties and characteristics of the silver films have been investigated by ultraviolet-visible spectroscopy, scan electron microscope and atomic force microscopy (AFM). The results indicate that the particle size and shape are different at different reduction time. At the first 3 h, some triangular and hexagonal nanoparticles formed; with the reduction proceeding, the shape of the silver particles became irregular and the size became larger. The silver films obtained are very suitable as SERS active substrate. The relationship between SERS intensity and the reduction time has been investigated for 1,4-bis[2-(4-pyridyl)ethenyl]-benzene molecule adsorbed on the silver film. The SERS intensity reached a maximum at 8 h reduction. The AFM measurements indicate that roughness features with an average size of 100 nm are present on the surface, which yielded the strongest SERS signal. Pyridine was used as a probe molecule to investigate the enhancement factor (EF) of the silver films. According to the formalism of Tian and co-workers, the EF of the silver films is estimated to be 3.4 × 105. The silver film that can remain active for more than 50 days would seem to be suitable for various analytical applications.  相似文献   

4.
Two polyimides were synthesized for use as alignment layers. The pretilt angles of the liquid crystals, 4-cyano-4′-n-pentylbiphenyl, on the two polyimides were measured by the crystal rotation method. The relative surface atomic concentrations of F/C (%) were measured by X-ray photoelectron spectroscopy. Electric force microscopy was utilized to investigate the surface electrostatic property of the two thin polyimide alignment layers before and after rubbing. All results demonstrate that rubbing causes trifluoromethyl moieties to migrate towards the surface, absorb negative charges and orient along the rubbing direction. Thus, it is proposed that distributions of functional groups on the surface of the polyimide after rubbing are anisotropic and the van der Waals forces between the polar groups and liquid crystal molecules play an important role in the uniform orientation of the liquid crystal molecules.  相似文献   

5.
Pressed disks of TiO2 powder particles (≈1 μm in size) have been irradiated with a pulsed KrF (248 nm) excimer laser source at fluences between 0.1 and 1 J cm−2. Surface films (1.5–2 μm thick) have been studied by Raman microprobe spectroscopy and atomic force microscopy (AFM). The Raman study reveals a three-layer structure for the irradiated anatase powders. A dark layer of reduced oxide is sandwiched between a top coating of molten/resolidified rutile and an underlying defective, slightly oxygen-deficient mixed-phase of rutile and anatase. AFM measurements indicate that a smooth surface layer coexisting with the initial rough grain morphology gradually appears with increasing fluence. At low fluence, anatase is reduced in a dark film and further transformed into rutile. At intermediate fluence, a shiny coating of resolidified stoichiometric rutile forms on the dark film. It gets thicker as the fluence increases while darkening of the sublayer intensifies up to a maximum of approximately 700 mJ cm−2. At high fluence, however, melting and re-oxidation (and eventually ablation) prevail over reduction; the whole layer turns into a greyish crust of mostly resolidified rutile in non-ablated regions. A physico-chemical mechanism is proposed to explain the in-depth distribution of the various components as a function of fluence.  相似文献   

6.
In the present study, an attempt is made to understand the mechanism of field emission electron microscopy (FE-SEM) observation of wet agar gel using a typical hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF4]. The IL interaction with water molecules within agar gel during sample preparation condition for FE-SEM observation was investigated using Raman spectroscopy. Results showed that water molecules within agar gel form weak hydrogen bond such as BF4?HOH?BF4 by interaction with BF4 of IL, and, it remained stable even under vacuum condition at 60 °C, 24 h. This interaction was found to be helpful for IL displacement of the water molecules within agar gel. From this study, it was found that the exact morphology of gel materials in FE-SEM condition can be observed by optimization of water concentrations of IL and gel mixtures. Thus, using IL, agar gel or any other material under wet condition can be observed without drying in FE-SEM chamber, and, present result gives an insight to the mechanism of FE-SEM observation of agar gel using IL without any conducting coating.  相似文献   

7.
We have studied the nucleation and growth of Ge microcrystallities on Si(100) or evaporated Cr substrates from an rf glow discharge decomposition of GeH4 highly-diluted with H2, where the crystallinity, the surface microroughness and the local electric transport of the films have been measured as a function of the film thickness. For the film growth thicker than ∼65 nm, Raman scattering spectra show that the evolution of the microcrystalline phase tends to be saturated. In the thickness range of 7-65 nm, the nucleation and/or microcrystalline grain formation with progressive film growth and corresponding significant difference in the electrical conductivity in the direction of the film thickness between the grains and their boundaries have been demonstrated from topographic and current images taken simultaneously by an atomic force microscope with a conducting probe.  相似文献   

8.
Bi-Sr-Cu-O (BSCO) thin films have been epitaxially grown on cleaned SrTiO3 (001) substrates by a sequentially shutter-controlled molecular beam epitaxy system using an oxygen radical beam. A spot intensity of specular beam in in-situ reflection high-energy electron diffraction (RHEED) was monitored during the atomic layer epitaxy. Atomic force microscopy (AFM) images of the epitaxial thin films were observed in the atmosphere at some oscillation points of the specular beam intensities. The chemical composition ratios of the films (about 100 Å) were determined from intensities of X-ray photoemission spectroscopy. The crystallinity of the films was measured by X-ray diffraction.

The amount of metal deposition corresponding to a half cycle of the intensity oscillation of the specular spot was found to be appropriate to form the flat surface. Characteristic islands were found at the surfaces covered with excess bismuth or excess copper atoms in the AFM image. The intrinsic modulated structure of the BSCO crystal was observed at the surface after the first copper deposition on Sr/Bi/SrTiO3 in the RHEED pattern.  相似文献   


9.
Well-defined single layer and multilayered a-SiC:H films, deposited from tetravinylsilane at different powers by plasma-enhanced chemical vapor deposition on silicon, were intensively studied by in situ spectroscopic ellipsometry, nanoindentation, and atomic force microscopy. A realistic model of the sample structure was used to analyze ellipsometric data and distinguish individual layers in the multilayered film, evaluate their thickness and optical constants. Dispersion dependences for the refractive index were well separated for each type of individual layer, if the thickness was decreased from 315 to 25 nm, and corresponded to those of the single layer. A beveled section of the multilayered film revealed the individual layers that were investigated by atomic force microscopy and nanoindentation to confirm that mechanical properties in multilayered and single layer films are similar.  相似文献   

10.
We have deposited hydrogenated microcrystalline silicon films by standard rf glow discharge plasma CVD technique using a mixture of SiF4, Ar and H2 at low substrate temperatures. Although fully crystalline from the beginning of the growth, our films show a significant variation in the ratio of large (LG) and small grain (SG) with further growth, for any H2 dilution case, though the trend changes for each case. The mean sizes of the LG and SG do not vary much with growth, but a marked variation occurs in the size of the conglomerate grains, as shown by atomic force microscopy (AFM) studies. Notably, a change in the H2 dilution is found to affect not only the film microstructure, but also the crystalline orientation. We have shown the lateral and longitudinal growth of conglomerate grains to be highly dependent on the crystalline orientation. In studying the effect of film growth on film roughness, we have observed a linear correlation between the rms roughness as measured by AFM and the top surface layer as measured by spectroscopic ellipsometry. We have also succeeded in elucidating the growth mechanisms involved, apropos of surface roughness findings.  相似文献   

11.
Optical properties of nanocrystalline and ultrananocrystalline diamond films were studied by ex situ variable angle spectroscopic ellipsometry. The films were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition method. In the experiments Ar, CH4, and H2 gases were used as source gases. Elastic recoil detection analysis was applied to measure the hydrogen content of the deposited layers. Three-layer optical models were constructed for the evaluation of the measured ellipsometric spectra. Besides the Cauchy relation, the effective medium approximation and the Tauc-Lorentz dispersion relation were also used for the modeling of the optical properties of the diamond films. Atomic force microscopy was applied to investigate the surface roughness in function of the deposition conditions.  相似文献   

12.
Three organo-soluble polyimide powders have been synthesized. Their imidization was verified by Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA) techniques. The amorphous morphology of their thin films were confirmed by X-ray diffraction. Polyimide thin films were prepared by solution casting or spin coating. UV–visible transmission spectra of thin films revealed that they are almost transparent in the range of visible light. With in-plane orientation, revealed by FTIR spectra, negative birefringence (Δn) of thin films were observed, and refractive indices of the thin films along the film plane (nTE) and normal to the plane (nTM) were measured by a prism coupler. Because of negative birefringence of the thin films, they can be substituted for the compensation films for twisted nematic liquid crystal displays (TN-LCDs) to extend their viewing angles. In this paper, a 90°C TN-LCD and 120°C TN-LCD were taken as examples to show the compensation effect of thin films of a qualified polyimide.  相似文献   

13.
Variable angle spectrometric ellipsometry at room temperature is used to determine thin film parameters of substrates used in liquid crystal displays. These substrates consist of sequential thin films of polyimide (PI), on indium tin oxide (ITO),on SiO2 deposited on a glass backing approximately 1.1 mm thick. These films were studied by sequentially examining more complex systems of films (SiO2, SiO2-ITO, SiO2-ITO-PI). The SiO2 layer appears to be optically uniform and flat. The ITO film is difficult to characterize. When this surface film's lower surface is SiO2 and upper surface is an air-ITO-interface it is found that including surface roughness and variation of the optical properties with ITO thickness in the model improved the fit; suggesting that both phenomena exist in the ITO films. However, the surface roughness and graded nature of optical properties could be not determinable by ellipsometry when the ITO is coated with a polyimide film. The PI films are ellipsometrically flat and over the wavelength range from 500 to 1400 nm the real refractive index of polyimide films varying in thickness between 25 and 80 nm is well modeled by a two-term Cauchy model with no absorption. The ellipsometric thickness of the ITO layer is the same as the profilometric thickness; however, the ellipsometric thickness of the polyimide layers is roughly 10 nm larger than that obtained from the profilometer. These final observations are consistent with the literature.  相似文献   

14.
Rashmi R. Sahoo 《Thin solid films》2010,518(21):5995-6005
Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes; intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles. The medium and agglomeration were found to dictate the deformation mode. Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter. Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension. Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology.  相似文献   

15.
The evolution of InAs quantum dots (QDs) deposited on GaAs (001) was investigated in a continuous and unambiguous way as a function of the InAs coverage. Taking advantage of the intrinsic non-uniformity of the In flux in the molecular beam epitaxy system, a single sample was grown where the amount of InAs material varied in a monotonic way along the sample area. High-quality atomic force microscopy (AFM) images showed a saturation of the number of QDs nucleated out of the surface steps as the system evolved and confirmed that QDs can be effectively aligned along the surface steps up to the highest densities, which is an important subject for device application.  相似文献   

16.
Indium tin oxide (ITO) thin films were deposited on glass substrates by ion beam sputter deposition method in three different deposition conditions [(i) oxygen (O2) flow rate varied from 0.05 to 0.20 sccm at a fixed argon (1.65 sccm) flow rate, (ii) Ar flow rate changed from 1.00 to 1.65 sccm at a fixed O2 (0.05 sccm) flow rate, and (iii) the variable parameter was the deposition time at fixed Ar (1.65 sccm) and O2 (0.05 sccm) flow rates]. (i) The X-ray diffraction (XRD) patterns show that the ITO films have a preferred orientation along (400) plane; the orientation of ITO film changes from (400) to (222) direction as the O2 flow rate is increased from 0.05 to 0.20 sccm. The optical transmittance in the visible region increases with increasing O2 flow rate. The sheet resistance (Rs) of ITO films also increases with increasing O2 flow rate; it is attributed to the decrease of oxygen vacancies in the ITO film. (ii) The XRD patterns show that the ITO film has a strong preferred orientation along (222) direction. The optical transmittance in the visible spectral region increases with an increase in Ar flow rate. The Rs of ITO films increases with increasing Ar flow rate; it is attributed to the decrease of grain size in the films. (iii) A change in the preferred orientations of ITO films from (400) to (222) was observed with increasing film thickness from 314 to 661 nm. The optical transmittance in the visible spectral region increases after annealing at 200 °C. The Rs of ITO film decreases with the increase of film thickness.  相似文献   

17.
In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV–vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed.  相似文献   

18.
In situ tensile testing has been performed on thin gold film, 320 nm thick, deposited on polyimide substrates. During the tensile testing, strain/stress measurements have been carried out by X-ray diffraction using the d-sin2ψ method. The X-ray stress analysis suggests crack formation in the films for stresses greater than 670 MPa. The surface of the deformed specimen observed by atomic force microscopy (AFM) exhibits both cracks and two types of straight-sided buckling patterns lying perpendicular to the tensile axis. These buckling patterns can have a symmetrical or asymmetrical shape. The evolution of these two kinds of buckling structures under tensile stress has been observed in situ by AFM and compared to X-ray stress data. The results indicate that symmetrical straight-sided buckling patterns are induced by the compressive stress during unloading, whereas the asymmetrical result from the delamination of the film during the tensile deformation.  相似文献   

19.
Raman scattering and polarization-dependent synchrotron radiation X-ray absorption, in combination, have been employed to examine the residual stress of undoped GaN epitaxial layers grown on Si by molecular beam epitaxy and Si-doped n-type GaN layers grown on sapphire by metalorganic chemical vapor deposition. Values of the lattice constant of different GaN films can be deduced from the interatomic distances in the second coordination shell around Ga by polarization-dependent extended X-ray absorption fine structure analysis and the strain of the films can be obtained. This result is further confirmed by Raman scattering spectra in which the phonon modes show a significant shift between different GaN epitaxial layers with different growth conditions.  相似文献   

20.
The effect of SBA-15 microporosity on the crystal size of TiO2 was investigated employing SBA-15 materials with high (SBA-15-HM) and low (SBA-15-LM) microporosities (14.2% and 4.7% of microporous volume, respectively). TiO2 phase was incorporated inside SBA-15 using internal hydrolysis method over a wide range of loadings (7–63 wt%). At all loadings, TiO2 inside SBA-15 pores was in the form of anatase nanocrystals as found in characteristic Raman spectra. The crystal size of TiO2 anatase phase was determined by Raman spectroscopy using a correlation between Raman peak position and peak width and TiO2 crystal size. The correlation was established based on the set of unsupported TiO2 samples with the crystals size in the range 5–120 nm (BET and XRD). Using this correlation, it was found that the crystal size of TiO2 inside SBA-15 with high microporosity was lower than inside SBA-15 with low microporosity. This is a direct proof of the effect of wall microporosity on the dispersion of TiO2 inside SBA-15. Due to the higher TiO2 dispersion, TiO2/SBA-15-HM adsorbed more vanadia than TiO2/SBA-15-LM at the same TiO2 loadings. As a result, V2O5/TiO2/SBA-15-HM displayed higher activity than V2O5/TiO2/SBA-15-LM in NO SCR with ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号