首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sol–gel derived photonic bandgap films have been investigated as possible multilayer coatings for solar control glass applications. Multilayer Bragg mirrors, in particular, have been modelled by the Transfer Matrix method, designed to have either near-UV or near-IR reflectivity, but visible transparency, based on alternating aluminosilicate glass/titania quarter-wave stacks. Such composite multilayer structures have been deposited by sol–gel processing on selected glasses and other types of substrates and their optical characteristics have been measured by optical absorption and reflection spectroscopies, as well as spectroscopic ellipsometry to determine the single layer refractive index and thickness. The UV–visible-IR absorption and reflection characteristics of these multilayer coatings revealed solar control properties, due to the presence of peaks near ∼350–400 nm and ∼900–1000 nm, with reflectivities of the order of 70%, which appear promising for solar control application.  相似文献   

2.
B. Swatowska  T. Stapinski 《Vacuum》2008,82(10):942-946
The application of anti-reflective coatings (ARC) is a good method to improve the solar cell construction. The authors developed the RF plasma enhanced chemical vapour deposition method for preparation of amorphous silicon-nitrogen (a-Si:N:H) films for potential optoelectronic applications. The films have been obtained on borosilicate glass and monocrystalline silicon (1 0 0) (Cz-Si) in a process with optimised technological parameters such as a content of gaseous mixture of silane (SiH4) and ammonia (NH3). The properties of samples have been investigated by optical spectroscopy (PERKIN-ELMER Lambda 19) and scanning electron microscopy (SEM). The correlation between film properties and process parameters has been found. The results of optical investigations show that these materials are characterised by a variable optical gap dependent on the nitrogen content. After deposition of a-Si:N:H, a decrease in the total reflectivity, as compared to that of monocrystalline Si, was observed. The simulation of multicrystalline silicon solar cells performance with and without the ARC was done with the use of PC1D programme. The influence of the ARC on solar cell efficiency was observed. The obtained results indicate that a-Si:N:H films are suitable for application as antireflective and protective coatings for solar cells.  相似文献   

3.
ZnMgO: Ti transparent conducting thin films have been deposited on glass substrates by DC-magnetron sputtering, and the effects of sputtering pressure on their properties have been investigated. Electrical resistivity as low as 7.84*10−4Ω cm was achieved for ZnMgO: Ti thin film. All thin films provided high optical transparencies in the visible region. Thin films deposited at 6 Pa, 8 Pa and 10 Pa showed “blue shift”. These results have not only clarified the effects of the sputtering pressure on the properties of ZnMgO: Ti films, but also revealed the potential of ZnMgO: Ti films in solar cells application. Efficiency of solar cells may be improved by choosing ZnMgO: Ti thin film as transparent electrode.  相似文献   

4.
The properties of substrates used to deposit thin films are an important parameter in thin film production. Instead of using a commercial substrate, in this work, borate and phosphate glasses have been obtained by classic melt-quenching technique to be used as substrates for CdO films. Also, a microscope glass substrate has been used to compare the coating properties by other glass substrates. All films have been produced by Ultrasonic Spray Pyrolysis technique. The substrate temperature has been selected as 275 ± 5 °C. Thicknesses and some optical parameters such as refractive index and extinction coefficient have been determined by spectroscopic ellipsometry. Absorbance and transmittance spectra have been taken by UV/VIS spectrophotometer. Four-probe method has been used to determine the electrical resistivity values of the films. XRD investigations have shown that type of the substrate dramatically affects the characteristics of CdO films. CdO film deposited on phosphate glass substrate has the best structural quality. Atomic Force Microscope has been used to investigate the surface properties and roughness values of the films.  相似文献   

5.
In this work innovative antiscratch sol-gel coating films deposited on a soda-lime glass substrate are examined. Sol-gel coatings of different composition (TiO2, TiO2/B2O3, ZrO2 and ZrO2/B2O3) were prepared starting from Titanium, Zirconium and Boron alkoxides and from boron oxide. Coatings were obtained at room temperature and at atmospheric pressure by dip-coating using common soda lime silicate glass slides as substrates. Densification was carried out at 550 °C for 2 h in air. The morphology of the coatings has been studied by Atomic Force Microscopy, Scanning Electron Microscopy, and with a profilometer. Roughness grows with thickness and with boron addition. The mechanical properties of the films were evaluated by micro scratch at fixed and variable load. The scratch hardness numbers of ZrO2 and ZrO2/B2O3 coatings reach 6 GPa (glass value = 1.9 GPa), whereas the best value for the critical load is 16.7 N (glass value = 9 N).  相似文献   

6.
In consequence of previous investigation of individual transparent conductive oxide (TCO) and absorber layers a study was carried out on hydrogenated amorphous silicon (a-Si:H) solar cells with diluted intrinsic a-Si:H absorber layers deposited on glass substrates covered with different TCO films. The TCO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of using different TCO’s as a front contact in solar cells with structure as follows: Corning glass substrate/TCO (800, 950 nm)/p-type μc-Si:H (∼5 nm)/p-type a-Si:H (10 nm)/a-SiC:H buffer layer (∼5 nm)/intrinsic a-Si:H absorber layer with dilution R = [H2]/[SiH4] = 20 (300 nm)/n-type a-Si:H layer (20 nm)/Ag + Al back contact (100 + 200 nm). Diode sputtered ZnO:Ga, textured and non-textured ZnO:Al [3] and commercially fabricated ASAHI (SnO2:F) U-type TCO’s have been used. The morphology and structure of ZnO films were altered by reactive ion etching (RIE) and post-deposition annealing.It can be concluded that the single junction a-Si:H solar cells with ZnO:Al films achieved comparable parameters as those prepared with commercially fabricated ASAHI U-type TCO’s.  相似文献   

7.
The surface of biomedical titanium implants has been covered with thin films of bioactive glass and bioactive glass + poly(methyl methacrylate nanocomposite) in order to increase the resistance to corrosion and improve the bioactivity of their area in contact with bone tissue. To this purpose Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation with an excimer laser source have been applied.The layer assessments under conditions that simulate their biological interaction with the human body fluids and resistance to degradation have been studied by electrochemical polarization and electrochemical impedance spectroscopy. The poly(methyl methacrylate) addition to bioglass has reduced the bone ability to bond but resulted in a significant increase of the shielding efficiency against corrosion of the applied coatings.The obtained results support the application of bioactive glass and composite bioactive glass + poly(methyl methacrylate) coatings for the development of advanced highly stable implants and prostheses that cannot be affected by corrosion.  相似文献   

8.
SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy bandgap phases e.g. SnS2, Sn2S3 and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. In this work thin films of tin sulphide have been thermally evaporated onto glass and SnO2:coated glass substrates with the aim of optimising the properties of the material for use in photovoltaic solar cell device structures. In particular the effects of source temperature, substrate temperature, deposition rate and film thickness on the chemical and physical properties of the layers were investigated. Energy dispersive X-ray analysis was used to determine the film composition, X-ray diffraction to determine the phases present and structure of each phase, transmittance and reflectance versus wavelength measurements to determine the energy bandgap and scanning electron microscopy to observe the surface topology and topography and the properties correlated to the deposition parameters. Using the optimised conditions it is possible to produce thin films of tin sulphide that are pinhole free, conformal to the substrate and that consist of densely packed columnar grains. The composition, phases present and the optical properties of the layers deposited were found to be highly sensitive to the deposition conditions. Energy bandgaps in the range 1.55 eV-1.7 eV were obtained for a film thickness of 0.8 μm, and increasing the film thickness to > 1 μm resulted in a reduction of the energy bandgap to less than 1.55 eV. The applicability of using these films in photovoltaic solar cell device structures is also discussed.  相似文献   

9.
《Vacuum》2008,82(11-12):1412-1415
Hydrogenated amorphous carbon (a-C:H) films have been grown from argon/methane gas mixtures by electron cyclotron resonance chemical vapour deposition (ECR-CVD) on silicon substrates. The effects of the application of a DC substrate bias on the structural, morphological and mechanical properties of the films have been explored by multiple analysis techniques such as infrared and micro-Raman spectroscopy, atomic force microscopy, nanoindentation and pin-on-disk wear testing. In general, within the range of applied substrate bias (i.e. from −300 up to +100 V) we have observed a strong correlation between all measured properties of the a-C:H films and the ion energy. This work shows that the properties can differ greatly and indicates a threshold energy in the order of 90 eV. For the production of hard, low-friction coatings energies above this value are required.  相似文献   

10.
Multilayer coatings consisting of thin silver layers sandwiched between layers of transparent conducting metal oxides are investigated from the view point of low-resistance electrodes for use in flat panel displays, solar cells, etc. ZnO/Ag/ZnO multilayer films were prepared on glass substrates by simultaneous RF magnetron sputtering of ZnO and dc magnetron sputtering of Ag. Optimization of the deposition conditions of both ZnO layers and metallic layers were performed for better electrical and optical properties. The structural, electrical and optical properties of the films (deposited at room temperature, different substrate temperature and annealed at different conditions) were characterized with various techniques. We could not produce high-quality transparent conductive electrodes simply by annealing at various temperatures. However, improved electrical properties and a considerable shift in the transmittance curves was observed after heat treatment. The experimental results show that the electrical resistivity of as-grown films can be decreased to 10− 5 Ω cm level with post-annealing at 400 °C for 2 h in vacuum atmosphere. After heat treatment, the sheet resistance was reduced as much as 20% which was due to the increased grain size of Ag film. The samples heat treated at 200-400 °C under vacuum or nitrogen atmosphere showed the best electrical properties. The key to the superior electrical and optical properties of the multilayer is the optimization of growth conditions of the silver layer by careful control of the oxide properties and the use of appropriate annealing temperature and atmosphere.  相似文献   

11.
Thin (1 μm) a-Si:H films have been deposited on glass at high-deposition rate (8 nm/s) and high substrate temperature (400 °C) by the expanding thermal plasma technique (ETP). After a Solid Phase Crystallization treatment at 650 °C for 10 h, many crystal grains are found to extend over the entire thickness (1 μm) of the polycrystalline silicon (poly-Si) films. This result indicates that the scalable, high-deposition rate ETP method can contribute to increase the potential for a widespread diffusion of poly-Si based thin film solar cells on glass.  相似文献   

12.
Zinc oxide thin films have been grown on glass substrate at room temperature by electron beam evaporation and then were annealed in annealing pressure 600 mbar at different temperatures ranging from 250 to 550 °C for 30 min. Electrical, optical and structural properties of thin films such as electrical resistivity, optical transmittance, band gap and grain size have been obtained as a function of annealing temperature. X-ray diffraction has shown that the maximum intensity peak corresponds to the (002) predominant orientation for ZnO films annealed at various temperatures. The full width at half maximum, decreases after annealing treatment which proves the crystal quality improvement. Scanning electron microscopy images show that the grain size becomes larger by increasing annealing temperature and this result agrees with the X-ray diffraction analysis.  相似文献   

13.
Tungsten trioxide (WO3) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 °C and 400 °C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO3 films are formed after calcination at 250 °C for both processing routes; however, the coatings that calcined at 400 °C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 °C and 400 °C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62–2.74 × 10− 3 (mC cm− 2) for APTA coatings; and 0.35–1.62 × 10− 3 (mC cm− 2) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.  相似文献   

14.
S. Gayam 《Thin solid films》2007,515(15):6060-6063
Thin films of zinc-tin-oxide (ZTO) have been deposited on SnO2:F coated glass substrates by co-sputtering of SnO2 and ZnO. The deposition conditions for ZTO were controlled in order to vary film stoichiometry. The electro-optical and structural properties of ZTO have been studied as a function of their stoichiometric ratio and post-deposition annealing conditions. The same films were subsequently utilized as part of a bi-layer transparent front contact for the fabrication of CdTe solar cells: glass/SnO2:F/ZTO. The performance of these devices suggested that the ZTO deposition and cell processing conditions can be optimized for enhanced device performance in particular for devices with thin CdS. Specifically, high blue spectral response (> 70% at 450 nm), accompanied by high open-circuit voltages (830 mV), and fill factors (70+%) have been demonstrated. Best solar cell performance was obtained for multi-phase ZTO films deposited at substrate temperatures of 400°C and a Zn/Sn ratio of 2.0, and which contained the binary phase of ZnO2.  相似文献   

15.
N. Kamoun  B. Rezig 《Thin solid films》2007,515(15):5949-5952
We have investigated synthesis conditions and some properties of sprayed Cu2ZnSnS4 (CZTS) thin films in order to determine the best preparation conditions for the realization of CZTS based photovoltaic solar cells. The thin films are made by means of spraying of aqueous solutions containing copper chloride, zinc chloride, tin chloride and thiourea on heated glass substrates at various temperatures. In order to optimize the synthesis conditions of the CZTS films, two series of experiments are performed. In the first series the sprayed duration was fixed at 30 min and in the second it is fixed at 60 min. In each series, the substrate temperature was changed from 553°K to 633°K. The X-ray diffraction shows, on one hand, that the best crystallinity was obtained for 613°K as substrate temperature and 60 min as sprayed duration. On the other hand, these CZTS films exhibit the kesterite structure with preferential orientation along the [112] direction. Atomical Force Microscopy was used to determine the grain sizes and the roughness of these CZTS thin film. After the annealing treatment, we estimated the optical band-gap energy of the CZTS thin film exhibiting the best crystallinity as 1.5 eV which is quite close to the optimum value for a solar cell.  相似文献   

16.
In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu2O) and copper hydroxide (Cu(OH)2) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors.  相似文献   

17.
M. Sahal  B. Marí  M. Mollar 《Thin solid films》2009,517(7):2202-3360
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low-cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different composition solutions at various substrate temperatures. Structural, chemical composition and optical properties of CIS films were analysed by X-ray diffraction, energy dispersive X-ray spectroscopy and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the <112> direction and no remains of oxides were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stochiometry can be obtained. An optical gap of about 1.51 eV was found for sprayed CIS thin films.  相似文献   

18.
Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 × 10− 4 Ω cm on glass while that on the polyimide was 1.9 × 10− 4 Ω cm. Substrate temperatures above 100 °C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells.  相似文献   

19.
Background and purposeIn order to compare the substrates influence on the properties of ZnO films and nanostructures, in this paper, the ITO substrates with different thicknesses were investigated.MethodITO thin films of different thickness (200 nme500 nm) were deposited on glass substrates by DC sputtering, on which ZnO nanorods were fabricated from as-deposited ZnO films by reducing annealing method.ResultsIt was found that the structural and electrical properties of ITO films were significantly influenced by the ITO film thickness. The roughness of ITO films was increased with increase in thickness. The Hall mobility of ITO films was also increased with the increase of film thickness; in contrast, the resistivity was decreased. The highest Hall mobility of 29.2 cm2/V s and the lowest resistivity of 1.303 × 10−4 Ω cm were obtained from 500 nm-thick ITO film. The structural properties of ZnO nanorods were significantly influenced by the ITO film thickness. The density of ZnO nanorods gradually decreased with the increase in thickness of ITO film.ConclusionThe overall conversion efficiency of demonstrated dye-sensitized solar cell was 2.11% with a fill factor 0.526, indicating high potential to be used as photoanodes in dye-sensitized solar cell applications.  相似文献   

20.
Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10–2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号