首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
The bulk structure and epitaxial growth of aluminum films deposited on mica substrates by thermal evaporation in a wide temperature range (16-550 °C) in high vacuum were investigated by transmission electron microscopy and transmission electron diffraction. The surface morphology of the films was observed and analyzed by atomic force microscopy. The films prepared at room temperature consist of single crystals having a diameter of 90 ± 40 nm with (111) planes. The surface of the films comprises spherical grains with morphology that is caused by self-shadowing during the deposition. The surface of the films becomes smoother as the temperature increases, and atomically-smooth surfaces with a root-mean-square roughness of about 0.45 nm over an area of 1 μm2 are obtained at 250-350 °C. The crystals are oriented randomly along the [111] direction perpendicular to the substrate. The surface of the films consists of larger (> 300 nm) grains with terraces, and the surface becomes rough above 400 °C. Films with well-oriented single crystals along the [111] direction perpendicular to the substrate are obtained above 520 °C. The films grown epitaxially at 520-550 °C are characterized by the isolated grains with a diameter of 1220 ± 450 nm.  相似文献   

2.
Indium zinc oxide (IZO) films were deposited as a function of the deposition temperature using a sintered indium zinc oxide target (In2O3:ZnO = 90:10 wt.%) by direct current (DC) magnetron reactive sputtering method. The influence of the substrate temperature on the microstructure, surface roughness and electrical properties was studied. With increasing the temperature up to 200 °C, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about 3.4 × 10− 4 Ω cm. Change of structural properties according to the deposition temperature was also observed with X-ray diffraction patterns, transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. IZO films deposited above 300 °C showed polycrystalline phases evolved on the amorphous IZO layer. Very flat surface roughness could be obtained at lower than 200 °C of the substrate temperature, while surface roughness of the films was increased due to the formation of grains over 300 °C. Consequently, high quality IZO films could be prepared by DC magnetron sputtering with O2/Ar of 0.03 and deposition temperature in range of 150-200 °C; a specific resistivity of 3.4 × 10− 4 Ω cm, and the values of peak to valley roughness and root-mean-square roughness are less than 4 nm and 0.5 nm, respectively.  相似文献   

3.
Godhuli Sinha 《Thin solid films》2008,516(10):2858-2863
c-axis-oriented gallium nitride (wurtzite GaN) thin films were fabricated by nitridation of acetate derived precursor films deposited on fused silica substrates without any buffer layer on the top of the substrate. The acetate derived precursors were obtained by (i) preparing a gallium-acetate sol by reacting Ga metal with acetic acid, (ii) coating cleared fused silica substrate with the sol and (iii) after drying the coated films at 100 °C, annealing them in air at 300°, 500° and 900 °C. Only films showing crystallization of α-GaO(OH) (300 °C) and (α + β)-Ga2O3 (500 °C) were selected for nitridation. In spite of the amorphous nature of the substrate, the GaN films showed a strong preferred orientation for the basal plane (002) under selected conditions of precursor annealing (300°, 500 °C) and subsequent nitridation (under flowing NH3) temperature and time. In other cases formation of an additional plane, i.e. (101) was indicated as a weaker peak in X-ray diffraction (XRD) patterns. The precursors and nitride films were characterized by Fourier transform infrared spectroscopy, UV-Visible spectroscopy, XRD, high resolution transmission electron microscopy and atomic force microscopy analyses.  相似文献   

4.
In-doped ZnO films with low mole fraction (0.1, 0.3, 0.6 at.%) were prepared on p-Si (111) at 600 °C by the pulsed laser deposition (PLD). The effect of composition on structures, optical and electrical properties was studied by X-ray diffraction, atomic force microscopy, photoluminescence, and the Hall Effect measurement system. In-doped ZnO film has (101) preferred orientation and UV emissions of ZnO:In films were red shift with increasing In contents and there are no deep-level emissions. The lowest resistivity of 5.6 × 10− 2 Ωcm and highest mobility of 33.1 cm2/Vs was observed at the In content of 0.3 at.%.  相似文献   

5.
Multilayer lithium tantalate thin films were deposited on Pt-Si [Si(111)/SiO2/TiO2/Pt(111)] substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 °C) for 15 min. The films are polycrystalline at 650 °C and at other annealing conditions below 650 °C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 °C. These polycrystalline films exhibit spontaneous polarization of 1.5 μC/cm2 at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal.  相似文献   

6.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

7.
Keng-Shuo Wu 《Thin solid films》2008,516(12):3808-3812
Bismuth thin films were grown by pulsed-laser deposition on glass substrates with the substrate temperature from − 40 °C to 200 °C. The structure of the films was characterized by X-ray diffraction. The surface morphology was studied by atomic force microscopy and X-ray reflectivity. The electrical properties of the films were probed by Hall and van der Pauw measurements. We observed changes in the orientation, grain size and roughness of the bismuth films as a function of the substrate temperature. In particular, at − 30 °C, the surface roughness was drastically reduced, leading to very smooth bismuth films with highly (111)-preferred orientation. Furthermore, the preferred orientation disappeared at around − 40 °C.  相似文献   

8.
ITO films were deposited onto glass substrates by ion beam assisted deposition method. The oxygen ions were produced using a Kaufman ion source. The oxygen flow was varied from 20 until 60 sccm and the effect of the oxygen flow on properties of ITO films has been studied. The structural properties of the film were characterized by X-ray diffraction and atomic force microscopy. The optical properties were characterized by optical transmission measurements and the optical constants (refractive index n and extinction coefficient k) and film thickness have been obtained by fitting the transmittance using a semi-quantum model. The electrical properties were characterized by Hall effect measurements. It has been found that the ITO film with low electrical resistivity and high transmittance can be obtained with 40 sccm oxygen flow (the working pressure is about 2.3 × 10− 2 Pa at this oxygen flow).  相似文献   

9.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

10.
C/SiO2 multi-layer films (3-layer films and 5-layer films) were obtained by sol-gel method and physical deposition on glass plates, and then heated at 500 °C for 1 h under a nitrogen atmosphere. The mechanical adhesive force with the substrate of the multi-layer films was sharply enhanced compared to the as-deposited amorphous carbon film. An absorption layer was formed on heat treated C/SiO2 multi-layer films by modification of the surface with trimethylchlorosilane, and the wettability of the films changed from hydrophilic to super-hydrophobic. The structures of the physically deposited carbon and the multi-layer films were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The experimental results showed that the 5-layer films had a concentric ring structure that caused the film to be superhydrophobic.  相似文献   

11.
Hongxia Li  Xin Wu  Jiyang Wang 《Vacuum》2008,82(5):463-467
Epitaxial YbVO4 films have been grown on sapphire and Si/SiO2 substrates by pulsed laser deposition. Films were grown over a range of temperatures from 600 to 700 °C in the presence of an oxygen pressure between 2 and 20 Pa. The films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution scanning electron microscopy (HRSEM), and dark-mode prism coupling measurements. YbVO4 films show epitaxial growth and display one main axis orientation of (2 0 0). The degree of crystal orientation increases with increasing depositing temperature and oxygen pressure up to 700 °C and 20 Pa, respectively. AFM and HRSEM measurements show that the prepared films are dense and homogeneous and three-dimensional-island growth mechanism is confirmed. According to prism coupling measurements, sharp dip is observed for both transverse-electric (TE) and transverse-magnetic (TM) mode, which means that the light could be well confined in the prepared film.  相似文献   

12.
In this work, pulsed laser-deposited thin films of MgO were studied for application in plasma display panels. The firing voltage (FV) of discharge cells with MgO films was measured and the film structure was investigated as a function of film deposition conditions. MgO thin films were deposited at oxygen pressure and substrate temperature between 0.02-5 Pa and 260-600 °C, respectively. The structure of thin films was investigated by using X-ray diffraction, X-ray reflection and atomic force microscopy methods. It was found that the FV is strongly correlated with the film deposition conditions and structural properties. In general, the FV values were smaller for the films with higher crystallinity and density. The crystallinity and the density of the films increased when the deposition temperature was raised and the O2 pressure was reduced. The lowest FV values (~ 120 V) were obtained at the growth temperature of 550 °C and at O2 pressures below 1 Pa.  相似文献   

13.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

14.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

15.
CuInGa precursor thin films were deposited using a CuGa (75-25 at.%) and an In 3″ diameter target material simultaneously by RF magnetron sputtering. The precursor films were deposited on Si and glass substrates at − 80 °C and room temperature, and characterized by Rutherford backscattering spectroscopy, Auger electron spectroscopy, scanning electron microscopy, atomic force microscopy and X-ray diffraction. The effects of gun power density and substrate temperatures on resulting precursor film properties were investigated. Precursor films deposited at − 80 °C have a smooth morphology with a 75% reduction in all roughness values and are more dense and homogeneous in structure compared to precursors deposited at room temperature. Therefore these precursors will result in better selenization process reproducibility.  相似文献   

16.
TiO2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O2 plasma. The TiO2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 °C to 800 °C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 °C. The film annealed at 400 °C showed higher hardness than the film annealed at 600 °C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 °C to 800 °C, as revealed by a decrease in water CA from 87° to 50°. Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.  相似文献   

17.
The effect of dopant concentrations in strontium-doped ZnO films on Love wave filter characteristics was investigated. Strontium-doped ZnO films with a c-axis preferred orientation were grown on ST-cut quartz by radio frequency magnetron sputtering. The crystalline structures and surface morphology of films were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The electromechanical coupling coefficient, dielectric constant, and temperature coefficient of frequency of filters were then determined using a network analyzer. A uniform crystalline structure and smooth surface of the ZnO films were obtained at the 1-2 mol% strontium dopant level. The electromechanical coupling coefficient of the 1 mol% strontium-doped ZnO film reaches a maximum of 0.61%, and the temperature coefficient of frequency declines to + 12.87 ppm/°C at a 1.5 mol% strontium dopant level.  相似文献   

18.
Yong Zoo You 《Thin solid films》2007,515(5):2860-2863
Aluminum nitride (AlN) films were reactively deposited on (100) oriented silicon substrates by reactive radio frequency (RF) magnetron sputtering for different incidence angles and distances between substrate and target.X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to consider the influence of process parameters such as reactive gas flow rate, grazing incidence angle (α), and distance (d) between substrate and target surface on the property of AlN films. XRD results showed that AlN film prepared at a constant distance (d) of 3 cm and an incidence angle of 45° revealed a mixture of AlN (002), (100), and (101) planes, while the film prepared at α = 0° revealed a strong AlN (002) orientation which has a perpendicular growth direction to the substrate surface. AFM results showed that AlN film prepared at α = 0° exhibited more flat surface morphology than that of film prepared at α = 45°.  相似文献   

19.
Self-assembled multilayered films were prepared by alternate deposition of a strong cationic polyelectrolyte, poly(trimethylammonium ethyl methacrylate chloride) and a pH-dependant anionic polyelectrolyte, poly(acrylic acid). The layer-by-layer adsorption was followed in-situ by optical fixed-angle reflectometry and after drying by ellipsometry. A recently developed “substrate thickness method” was applied to calculate the adsorbed amount of polymer from the reflectometric signal. Surface film morphology was imaged before and after drying with atomic force microscopy (AFM). Influence of the number of adsorbed layers, concentration and type of salts on the multilayer growth was examined. The number of adsorbed layers produced a specific effect on the reflectometric signal which is linked to the refractive index of the film. Adjustment of the adsorbed amount of polyelectrolytes was done by changing sodium chloride salt concentration within a range of 10− 3 to 10− 1 M. AFM observations showed a significant evolution in surface morphology and a maximum of surface roughness for films built-up at 10− 2 M. Experiments were then carried out at 10− 3 M in either barium chloride or zinc chloride salts. In the presence of Ba2+ and Zn2+ ions, adsorption of 5 bilayers is completely modified and the surface morphology was smoother than the multilayers obtained using sodium chloride salt.  相似文献   

20.
The magnesium doped zinc oxide is a promising optical material to enhance the luminescence for possible application in solid state lighting. Magnesium doped zinc oxide thin films (Zn0.85Mg0.15O) were deposited by sol-gel route on p-type silicon and annealed at different temperatures in oxygen environment for an hour. The doping of magnesium in zinc oxide was confirmed by X-Ray diffraction and the samples were found to have wurtzite crystal structure with (002) preferred orientation. The films were characterized by Hall-effect, atomic force microscopy, UV-VIS spectroscopy, photoluminescence (PL) and work function measurements. The different studies exhibited an anomalous behavior for the film annealed at 900 °C. The Hall effect, work function measurements and UV-VIS spectroscopy indicated that the resistivity, work function and optical band gap increased as a function of annealing temperature (from 300 °C to 700 °C) however these parameters were found to decrease for the films annealed above 700 °C. The particle size increased with the annealing but for the samples annealed at 900 °C, the shape of the grains changed and became elongated like fibers as observed by the atomic force microscopy. The PL measurements displayed the existence of oxygen vacancies defects for the samples annealed at and above 600 °C. The possible mechanism for this anomaly has been discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号