首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
ABSTRACT

Various Poly(urethane-urea)s (PUU)s were prepared by polycondensation of various azo dyes having both amino and hydroxyl group with Toluene 2,4-diisocyanate. The resultant poly(urethane-urea)s were characterized by the elementary analysis, IR spectral, nonaqueous conductometric titration, and thermogravimetry. The electrical conductivity of these oligomers has also been measured at room temperature.  相似文献   

2.
Summary A new class of segmented poly(urethane-urea-amide) (PUUA) block copolymers contained poly(oxytetramethylene) (POTM) were prepared by direct condensation of diacid chloride with amine-terminated poly(urethane-urea) (ATPUU) oligomers. The ATPUUs were prepared from the reaction of NCO-terminated polyurethane prepolymer with different diamines. The PUUAs having reduced viscosities ranged from 0.87 to 1.82 dL/g. These polymers were soluble in various polar solvents and gave transparent, tough, and flexible films by casting from m-cresol The copolymers were studied by utilizing differential scanning calorimetry (DSC), thermogravimetry (TG), and tensile testing.  相似文献   

3.
《Polymer》2014,55(26):6764-6775
High molecular weight semi crystalline thermoplastic poly(ester urethanes), TPEUs, were prepared from a vegetable oil-based diisocyanate, aliphatic diol chain extenders and poly(ethylene adipate) macro diol using one-shot, pre-polymer and multi-stage polyaddition methods. The optimized polymerization reaction achieved ultra-high molecular weight TPEUs (>2 million as determined by GPC) in a short time, indicating a very high HPMDI – diol reactivity. TPEUs with very well controlled hard segment (HS) and soft segment (SS) blocks were prepared and characterized with DSC, TGA, tensile analysis, and WAXD in order to reveal structure–property relationships. A confinement effect that imparts elastomeric properties to otherwise thermoplastic TPEUs was revealed. The confinement extent was found to vary predictably with structure indicating that one can custom engineer tougher polyurethane elastomers by “tuning” soft segment crystallinity with suitable HS block structure. Generally, the HPMDI-based TPEUs exhibited thermal stability and mechanical properties comparable to entirely petroleum-based TPEUs.  相似文献   

4.
The novelty of the poly(urethane-urea) series consists in inclusion of o-dianisidine units in the main chain and cross-linking with renewable biomaterials, unused compounds so far in the synthesis of the poly(urethane-urea) (Tween 20, Span 20, Phloroglucinol). The effects of these components on the structure, surface, thermo-mechanical properties and dielectric behavior of the obtained poly(urethane-urea) were investigated by Fourier transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis, static contact angles, broadband dielectric spectroscopy, and mechanical testing. The FTIR spectra showed that the urethane hydrogen bonds decreased with the increase of o-dianisidine content. Such that, at the increase of the o-dianisidine content, decreased the thermo-mechanical properties, and increased strongly the water contact angle from 83 to 108°. By dielectric relaxation spectroscopy was studied the molecular dynamics within the polymeric matrices with identical soft segments but different structure of the hard domains. These poly(urethane-urea) materials exhibit two secondary relaxations (β and γ) and a relaxation process α, corresponding to the segmental movements in the soft phase, which occurs around the temperature of −50°C independent of the measurement frequency. o-Dianisidine prevents the formation of all the urethane hydrogen bonds and so increases the chains mobility and dipoles polarization of polymer matrix, thus increasing the dielectric constants.  相似文献   

5.
In this work, four aliphatic chain extenders, hexanediol (HDO), hexane diamine (HDA), cystamine (CY), and cystine dimethyl ester (CDE), were chosen to synthesize four kinds of polyurethane and poly(urethane-urea)s (PUs), respectively. HDO extended polyurethanes, HDA extended poly(urethane-urea), CY extended poly(urethane-urea), and CDE extended poly(urethane-urea) were denoted as OPU, APU, CPU, and SPU, respectively. The effect of chain extender type on microphase structure and performance of four PUs was investigated. Our research showed that mechanical strength increased in the following order: OPU < SPU < CPU < APU, and self-healing performance increased in the opposite direction. This result is attributed to the increasing degree of microphase separation: OPU < SPU < CPU < APU. The optimal sample SPU has not only excellent mechanical properties (tensile strength of 27.1 MPa and elongation at break of 397.7%), but also exhibits superior self-healing performance (self-healing efficiencies of 95.3% and 93.5% based on tensile strength and elongation at break). The moderate degree of microphase separation between the soft segments and the hard segments, the introduction of disulfide bonds and low degree of hydrogen bonding are responsible for preparing a polyurethane or poly(urethane-urea) system with high mechanical strength and excellent self-healing performance simultaneously. This work provides useful information for us to develop self-healing polyurethane or poly(urethane-urea) materials in the future.  相似文献   

6.
A series of polyurethane networks were prepared by reacting MDI (4,4′-diphenylmethane diisocyanate) with various mixtures of poly(oxyethylene) end-capped poly(oxypropylene) triol and diol. The uniaxial compressive properties of the polyurethane networks both in equilibrium swelling in toluene and in a dried state were measured at 27 °C. The compressive stress-strain data were analyzed according to equations based on the Gaussian theory of elasticity. Deviations from the Gaussian behavior were observed; however, as the polyether diol content increased, deviations from the Gaussian behavior decreased. The interaction parameters between the polyurethane networks and toluene at an equilibrium state were analyzed by the Flory-Huggins equation. As the polyether diol content increased, the interaction parameter, χ, increased due to the increasing content of the poly(oxyethylene) unit and urethane group concentration. With increasing polyether diol content, polyurethane networks approached phantom behavior more closely.  相似文献   

7.
Two series of polyurethanes were prepared to investigate the effect of comacrodiol structure on properties and morphology of polyurethanes based on the siloxane macrodiol, α,ω‐bis(6‐hydroxyethoxypropyl) polydimethylsiloxane (PDMS). All polyurethanes contained a 40 wt % hard segment derived from 4,4′‐methylenediphenyl diisocyanate (MDI) and 1,4‐butanediol (BDO), and were prepared by a two‐step, uncatalyzed bulk polymerization. The soft segments were based on an 80/20 mixture of PDMS (MW 967) and a comacrodiol (MW 700), selected from a series of polyethers and polycarbonates. The polyether series included poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(tetramethylene oxide) (PTMO), poly(hexamethylene oxide), and poly(decamethylene oxide) (PDMO), whereas the polycarbonate series included poly (hexamethylene carbonate) diol (PHCD), poly [bis(4‐hydroxybutyl)‐tetramethyldisiloxy carbonate] diol (PSCD), and poly [hexamethylene‐co‐bis(4‐hydroxybutyl)‐tetramethyldisiloxy carbonate] diol (COPD). Polyurethanes were characterized by size exclusion chromatography, tensile testing, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). The results clearly demonstrated that the structure of the comacrodiol influenced the properties and morphology of siloxane‐based polyurethanes. All comacrodiols, except PEO, improved the UTS of the polyurethane; PHMO and PTMO were the best polyether comacrodiols, while PSCD was the best polycarbonate comacrodiol. Incorporation of the comacrodiol made polyurethanes more elastomeric with low modulus, but the effect was less significant with polycarbonate comacrodiols. DSC and DMTA results strongly supported that the major morphological change associated with incorporation of a comacrodiol was the significant increase in the interfacial regions, largely through the compatibilization with the hard segment. The extent of compatibilization varied with the comacrodiol structure; hydrophilic polyethers such as PEO were the most compatible, and consequently, had poor mechanical strength. Among the polyethers, PHMO was the best, having an appropriate level of compatibility with the hard segment for substantial improvement in mechanical properties. Siloxy carbonate comacrodiol PSCD was the best among the polycarbonates. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1071–1082, 2000  相似文献   

8.
A series of poly(urethane-urea)/clay nanocomposite coatings were prepared by moisture curing of isophorone diisocyanate (IPDI) capped hydroxyl terminated polybutadiene (HTPB)/clay dispersions in a relative humidity (RH) of 50% at 25 °C. The curing progress was studied by periodic measurement of gel fraction of the coating samples. The studies revealed tortuosity effects of clay toward moisture diffusion, thus delaying the induction period of gelation, time for complete cure and rate of gel formation of the nanocomposite coatings. The clay platelets were found to be intercalated in the poly(urethane-urea) matrix, evidenced from wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Effects of nanoclay on state of the hard and soft segments were investigated by WAXD, differential scanning calorimetry (DSC), temperature modulated DSC (MDSC) and solid-state nuclear magnetic resonance spectroscopy (NMR). WAXD studies revealed unusually ordered hard segment morphology of the moisture cured poly(urethane-urea) and its nanocomposites. Slower soft segment dynamics upon clay addition was evident from concentration dependant broadening of the line widths of the NMR peaks, and decreasing reversible heat capacity changes at soft segment glass transition. The volume fraction of immobilized soft segments of the nanocomposites was determined from MDSC and was found to increase linearly with clay loading. The mechanical property analysis showed simultaneous reinforcement and toughening effect of nanoclay on the MCPU matrix. The increment in mechanical property of the nanocomposites varied proportionately with the volume fraction of immobilized soft segments.  相似文献   

9.
Starting from the natural α-amino-acid L-tyrosine, a potentially bioactive diphenolic molecule, N,N′-(pyromellitoyl)-bis-L-tyrosine dimethyl ester (8), was prepared in three steps using protecting groups to block the NH2 and COOH of tyrosine. A facile and rapid polycondensation reaction of diol 8 with several optically active diacid chlorides such as N,N′-(pyromellitoyl)-bis-(L-α-amino) diacid chlorides derived from L-phenyalanine, L-leucine, L-methionine, L-valine and L-alanin was developed under microwave irradiation. The polymerization reactions proceeded rapidly and was completed within 12 min, producing a series of novel poly(ester-imide)s (PEI)s in good yields and moderate inherent viscosities of 0.41–0.51 dL/g. The obtained polymers were characterized by means of FT-IR, 1H-NMR, elemental and thermogravimetric analysis techniques. In addition, in vitro toxicity test and biodegradability behavior of the diphenolic 8 and obtained PEIs were investigated in culture media and soil burial degradation. The outcome showed that synthesized diol 8 and its derived polymers are biologically active and biodegradable under natural environment.  相似文献   

10.
Hydrogen bond rich segmented poly(urethane-urea) was synthesized from methylene diphenylisocyanate (MDI) and three generations of polyurea-malonamide dendrons as hard segment and polycaprolactone diol as soft segment for thin film applications. The prepared polymers were characterized using spectroscopic, microscopic and thermal analyses. The formation of urethane linkage during the prepolymer reaction and the urea linkage between prepolymer and the dendrons is confirmed by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (NMR) spectroscopy. FTIR shows the presence of hydrogen bonding of –NH groups with both urethane carbonyl group from hard segment and the ether group from the soft segment. However, the phase mixing of hard and soft segments decreases with the higher generation dendrons, as evidenced from FTIR. This observation was confirmed by phase images of the atomic force microscopy (AFM). The coating when applied to clean steel substrates via dip coating reveals uniform, dense and essentially defect free morphology. The work demonstrates that the mechanical properties of the hybrid thin films are dependent on the generation of the dendrons and provides a platform for surface engineering with tunable elastic modulus.  相似文献   

11.
A novel poly(ester‐urethane) with tailor‐made structure was prepared by using lactic acid (LA) as starting material through a combination of two facile common reactions. First, a diol was prepared via the esterification between LA and poly(ethylene glycol) (PEG) with low molecular weight. Subsequently, the poly(ester‐urethane) was synthesized through the addition polymerization of the LA‐based diol and toluene 2,4‐diisocyanate with 1,4‐butanediol as chain extender. The structure, morphology, and properties of intermediate and the poly(ester‐urethane) were analyzed with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography (GPC), X‐ray diffraction, differential scanning calorimetry, polarizing optical microscopy, and thermogravimetric analysis. The results indicated that the intermediate was a diol of conjugating quite short lactate sequences with PEG oligomer, and the structure of the poly(ester‐urethane) was as expected. The thermal transition, thermal decomposition temperature, and crystallinity of the polymer samples depended on the molecular size of PEG. In vitro degradation property of the poly(ester‐urethane) also relied on the molecular weight of PEG. The weight loss percentages varied from 11 to 36% after 12‐days immersing in phosphate‐buffer saline at 37°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A new diol with a one‐sided azobenzene‐carboxyl group was prepared to be used for photosensible polymers synthesis. Azobenzene carboxyl containing polyurethane based on poly(tetramethylene oxide) diol of 2000 average molecular weight, 2,4‐tolylene diisocyanate, and the mentioned azo diol, was obtained and characterized. Upon neutralization the acid form with metal acetate (Li+1, Ca+2) or triethylamine azo carboxylate anionomers with an improved phase separation were obtained. Viscometric measurements of diluted dimethylformamide solutions exhibited evidence of polyelectrolyte behavior. Some aspects of the trans‐cis photoisomerization have been examined to design in future various dyed aqueous dispersions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 577–582, 2005  相似文献   

13.
A series of crosslinked polyurethane‐block‐poly(trifluoropropylmethyl)siloxane elastomers were prepared via two steps. First, poly(trifluoropropylmethyl)siloxane polyurethane (FSPU) prepolymers were synthesized with α,ω‐bis(3‐aminopropyldiethoxylsilane) poly(trifluoropropylmethyl)siloxane (APFS) and toluenediisocyanate (TDI) and then capped with butanediol to generate the macromolecular FSPU diol extender. Second, polyurethane prepolymers synthesized from poly(tetramethylene oxide) and TDI were reacted with FSPU diol extenders with different ratios. The copolymers formed films through moisture curing and were characterized by Fourier transform infrared spectroscopy, DSC, dynamic mechanical analysis, TGA, mechanical testing etc. It is found that the equivalent ratio of reactants gives rise to a high molecular weight of copolymers and that low molecular weight APFS in the copolymers can form a certain number of silicon–oxygen crosslinks resulting from silicon alkoxy to produce higher tensile strength elastomers. The material thus has higher thermal stability and a more stable surface performance. The copolymers are then good candidates for biomedical applications.© 2013 Society of Chemical Industry  相似文献   

14.
The N,N‐diethyl dithiocarbamato group present in a variety of compounds acts as an initiator in the photopolymerization processes. The photolability of this group is due to the cleavage of the C S bond by UV irradiation. N,N‐Diethyl dithiocarbamato‐(1,2)‐propane diol with a pendent N,N‐diethyl dithiocarbamato group was prepared from 3‐chloro‐(1,2)‐propane diol and sodium diethyl dithiocarbamate. A polyurethane macrophotoinitiator was then synthesized by a two‐step process, where N,N‐diethyl dithiocarbamato‐(1,2)‐propane diol was used as the chain extender. Other components used included 4,4′‐diphenylmethane diisocyanate and poly(propylene glycol) (molecular weight = 1000). The polyurethane thus synthesized had pendent N,N‐diethyl dithiocarbamato groups. This polyurethane macrophotoinitiator was then used to polymerize methyl methacrylate in a photochemical reactor (Compact‐LP‐MP 88) at 254 nm. The resulting graft copolymer, polyurethane‐g‐poly(methyl methacrylate), was freed from the homopolymer by a standard procedure. The graft copolymer was characterized by Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, solution viscometry, and scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

16.
A new diol with bistriazene groups, 1,1′[4,4′‐diphenylether]‐3,3′‐di(β‐hydroxyethyl methyl)‐bistriazene (BTD), was synthesized and characterized. BTD, along with N‐methyldiethanolamine as a chain extender, was used to prepare a segmented polyurethane based on poly(tetramethylene oxide) diol (weight‐average molecular weight = 2000) and 2,4‐tolylene diisocyanate (80:20 v/v 2,4‐/2,6‐isomer mixture). Subsequent quaternization of the amine with benzyl chloride formed the cationomer. The structure–property relationships, including the photochemical behavior of the triazene linkage in these polymers, were investigated with respect to another polyurethane prepared from 4,4′‐diphenylmethane diisocyanate and a bistriazene compound. Photolysis experiments were carried out in polymer solutions and in the film state, and the reduction of the π–π* absorption band, characteristic of the triazene chromophore in ultraviolet spectra, was followed. A kinetic evaluation revealed a first‐order photoprocess. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 385–391, 2005  相似文献   

17.
A series of block poly(ester-ether urethane)s, poly(PHB/PCL-PEG-PCL), based on poly(3-hydroxybutyrate) (PHB-diol), as hard segments, and poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone), (PCL-PEG-PCL) triblock copolydiol, as soft segments, were prepared using 1,6-hexamethylene diisocyanate (HDI), as non-toxic connecting agent. Polyurethanes block copolymer was synthesized from bacterial PHB and PCL-PEG-PCL blocks. The chemical structure and molecular weights of polymers prepared were characterized by FTIR, 1H NMR and GPC. The effect of chemical structure on the thermal and mechanical properties was studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile testing. The DSC results revealed that poly(PHB/PCL-PEG-PCL) urethanes are semi-crystalline with two crystallizable PHB and PCL-PEG-PCL blocks. The thermal stability of the urethanes is less than neat PHB. The results of tensile testing showed that the extensibility of PHB is largely enhanced by the incorporation of PCL-PEG-PCL soft segments. Activation energy E a , as a kinetic parameter of thermal decomposition, was estimated by each of the Ozawa and Kissinger methods. Close values of activation energy were obtained by both methods. The swelling behaviour of the copolymers was also investigated.  相似文献   

18.
Tunable hydrogel that contained well‐defined poly(vinyl alcohol) (PVA), labile lactate groups, and hydrophilic poly(ethylene glycol) (PEG) segments was prepared through a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and esterification reaction. A diol was prepared via the esterification between lactic acid (LA) and PEG. Then the diol was allowed to react with maleic anhydride to produce a diacid. Meanwhile, well‐defined PVA was synthesized by the alcoholysis of poly(vinyl acetate) (PVAc) obtained by RAFT polymerization of vinyl acetate. The hydrogels with tailor‐made structure were generated by crosslinking PVA with LA‐based diacid. The structures and properties of LA‐based intermediates and the hydrogels were characterized with Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. Both LA‐based diol and diacid were semicrystalline and water‐soluble, their melting temperature and glass transition temperature were 52 and ?51, 54 and ?41°C, respectively. The polydispersity indexes of the precursor of PVA samples were within the range of 1.03–1.10. It was found that the thermal stability of hydrogel was higher than that of LA‐based diacid. Both the swelling and release properties of the hydrogels depend on the feeding ratio of PVA/LEM and the chain length of PVA, which reflected that the structure and properties of the hydrogels were controllable. POLYM. ENG. SCI., 54:1366–1371, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Interpenetrating polymer networks of polyacrylate (A) and poly (urethane-urea) (U) were prepared by mixing lattices of self-curing polyacrylate and urethane-urea prepolymer followed by subsequent curing of each network. The structures of the mixtures were analyzed by the dynamic viscoelasticity and the electron microscopy. It was found that a phase inversion occurred from the “U-phase particles in A-phase matrix” to the “A-phase in U-phase matrix” at A/U ? 30/70 as the U-phase content increases. With increasing A-phase content, tensile strength started to increase and elongation-to-break becomes almost constant after the A-phase formed a continuous phase. This implies that the tensile properties are closely related to the morphological features.  相似文献   

20.
A range of chemically modified energetic polymers has been synthesized. The structural modification involves the incorporation of a double bond into the polymeric binder which allows subsequent degradation of the material by ozonolysis thus providing an environmentally safe method for the disposal of munitions. This was achieved by reacting the energetic prepolymer, poly‐NIMMO, with a range of unsaturated diisocyanates where the double bond was incorporated into the cross‐linking i.e. “curing” agent. Firstly, poly‐NIMMO and cis‐1,4‐but‐2‐ene diol were reacted with hexamethylene diisocyanate. Secondly, three unsaturated diisocyanates (two novel) were prepared in situ from their corresponding diacyl azides and reacted with poly‐NIMMO. The three diisocyanates prepared were 1,4‐diphenoxy‐trans‐2‐butene‐diisocyanate, phenylene diacrylic di‐isocyanate, and trans‐2‐butene‐1,4‐diisocyanate. The latter has been reported previously(1,2) although never isolated and characterized; however, this has been achieved successfully in this study. GPC of the chain extended polymers prepared by both methods showed the expected increase in molecular weight distribution. A corresponding decrease following ozonolysis occurred particularly with the polymers prepared from 1,4‐diphenoxy‐trans‐2‐butene‐diisocyanate and phenylene diacrylic diisocyanate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号