首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study diamond-like carbon (DLC) films were deposited by a dual-mode (radio frequency/microwave) reactor. A mixture of hydrogen and methane was used for deposition of DLC films. The film structure, thickness, roughness, refractive index of the films and plasma elements were investigated as a function of the radio frequency (RF) and microwave (MW) power, gas ratio and substrate substance. It was shown that by increasing the H2 content, the refractive index grows to 2.63, the growth rate decreases to 10 (nm/min) and the surface roughness drops to 0.824 nm. Taking into consideration the RF power it was found that, as the power increases, the growth rate increases to 11.6 (nm/min), the variations of the refractive index and the roughness were continuously increasing, up to a certain limit of RF power. The Raman G-band peak position was less dependent on RF power for the glass substrate than that of the Si substrate and a converse tendency exists with increasing the hydrogen content. Adding MW plasma to the RF discharge (dual-mode) leads to an increase of the thickness and roughness of the films, which is attributed to the density enhancement of ions and radicals. Also, optical emission spectroscopy is used to study the plasma elements.  相似文献   

2.
The effect of coating thickness on the deformation behaviour of diamond-like carbon (DLC) coatings on silicon substrates was investigated. Following nanoindentation of a 0.6 µm thick DLC coating, the subsurface microstructures were characterized and the data was compared to prior studies on a similar, but thicker coating. Indentation resulted in localized plastic compression in the coating without any through-thickness cracking. It was shown that the discontinuities in the load-displacement curves appeared at lower loads for the thinner coating. Accordingly, the silicon substrate exhibited cracking, plastic deformation and phase transformation at significantly lower loads than in the case of the thicker coating. Further, the widths, parallel to the interface, over which slip and the phase transformation zone are spread out in the substrate, was found to increase with the thickness of the coating. The mechanism responsible for the first pop-in was found to change from phase transformation in uncoated silicon to dislocation nucleation in the presence of the coating.  相似文献   

3.
The deformation behaviour of diamond-like carbon (DLC) coatings on silicon substrates induced by indentation has been investigated. DLC coatings, deposited by a plasma-assisted chemical vapour deposition technique, were subjected to nanoindentation over a range of maximum loads from 100 mN to 300 mN. The resulting load-displacement plots displayed pop-ins for maximum loads of 200 mN and above, with no distinct pop-out for any of the loads studied. Compressive deformation of the coating, up to a strain of ∼ 9%, was observed. The coating-substrate composite was devoid of cracks at lower loads, but at the maximum load of 300 mN, ring cracks in the coating and a median crack in the substrate were observed. Furthermore, cracking, {111} slip and localized phase transformations were observed in the silicon substrate. The onset of these structural changes was correlated to the mechanical behaviour during indentation.  相似文献   

4.
Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.  相似文献   

5.
E. Liu  H.W. Kwek 《Thin solid films》2008,516(16):5201-5205
Diamond-like carbon (DLC) thin films used in this study were intended for their electrochemical properties. The DLC films were deposited by a filtered cathodic vacuum arc (FCVA) process on p-type silicon (100) substrates biased at different pulse voltages (0-2000 V). The chemical bonding structures of the DLC films were characterized with micro-Raman spectroscopy and the electrochemical properties were evaluated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The DLC films showed high impedance, high polarization resistance and high breakdown potential in a 0.5 M H2SO4 aqueous solution, which were attributed to the high sp3 content and uniformity of the films. The excellent chemical inertness of the DLC films made them promising corrosion resistant coating materials.  相似文献   

6.
Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate.  相似文献   

7.
Diamond-like carbon (DLC) films were synthesized by RF plasma enhanced chemical vapor deposition and the effects of plasma pre-treatment and post-treatment on the DLC films were investigated. Experimental results show that the surface roughness of the substrate, ranging from 0.2 to 1.2 nm, created by the plasma pre-treatment, will affect the surface roughness of the DLC films deposited using methane as the carbon source. However, the film surface roughness (0.1-0.4 nm) is much smaller than that of the substrate. Raman analysis and hardness measurement by nanoindentation indicate that the structure and the hardness of the DLC films are relatively unchanged for the film surface roughness investigated. For the argon or hydrogen plasma post-treatment of the DLC films deposited using acetylene as the carbon source, it is found that surface roughness decreases with the post-treatment time. Although the hardness decreases after post-treatment, it remains relatively constant with increasing post-treatment time.  相似文献   

8.
Hydrogenated diamond-like carbon (DLC) (H-DLC), argon-incorporated DLC (Ar-DLC) and nitrogen-incorporated DLC (N-DLC) coatings were deposited on flat rectangular Ti-6Al-4V samples. The DLC coatings were characterised by Raman spectroscopy and nanoindentation. Fretting wear tests were conducted on uncoated and DLC coated samples with an alumina ball as the counterbody. As the Ar-DLC and N-DLC coatings had relatively more sp2 network compared to the H-DLC coating, they exhibited lower values of hardness and elastic modulus. At both loads of 4.9 N and 14.7 N, all DLC coated specimens showed lower values of tangential force coefficient (TFC), wear volume and specific wear rate compared to the uncoated samples. While the Ar-DLC coated sample exhibited the lowest TFC, wear volume and specific wear rate at 4.9 N load, the N-DLC coated specimen exhibited the lowest TFC, wear volume and specific wear rate at 14.7 N load.  相似文献   

9.
Ion beam-assisted deposition offers a novel and unique process to prepare diamond-like carbon (DLC) films at room temperature, with particularly good interface adhesion. This advantage was explored in this study to deposit highly wear-resistant coating on bearing 52100 steel. Both dual ion beam sputtering and ion beam deposition were employed. Various bombarding species and energy were investigated to optimize the process. Raman, X-ray photoelectron and Auger electron spectroscopy were used to characterize the bonding structure of DLC. Extensive experiments were carried out to examine the tribological behaviour of the DLC/52100 system. A metal intermediate layer can help tremendously in wear resistance. The results are optimistic and may lead to useful applications.  相似文献   

10.
In this study, diamond-like carbon (DLC) films modified with titanium were deposited by plasma decomposition of metallorganic precursor, titanium isopropoxide in CH4/H2/Ar gas atmosphere. The obtained films were composed of amorphous titanium oxide and nanocrystalline titanium carbide, embedded in an amorphous hydrogenated (a-C:H) matrix. The TiC/TiO2 ratio in the DLC matrix was found to be dependent on the deposition parameters. The dependence of the films chemical composition on gas mixture and substrate temperature was investigated by X-ray photoelectron spectroscopy, whereas the crystallinity of TiC nanoparticles and their dimension were evaluated by X-ray diffraction. The size of TiC crystallites varied from 10 to 35 nm, depending on the process parameters. The intrinsic hardness of 10-13 GPa, elastic modulus of 170-200 GPa and hardness-to-modulus ratio of obtained coatings were measured by the nanoindentation technique. Obtained results demonstrated a correlation of mechanical properties with the chemical composition and the ratio of amorphous/crystalline phases in the films. In particular, the formation of nanocrystalline TiC with atomic concentration not exceeding 10% and with grain size between 10 nm and 15 nm resulted in significantly enhanced mechanical properties of composite material in comparison with ordinary DLC films.  相似文献   

11.
In this paper we concentrate on the microstructure of diamond-like carbon films prepared by plasma assisted chemical vapor deposition on acrylic rubber. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was monitored and controlled as a function of bias voltage and treatment time. Its influence during film growth on the appearance of patterns of cracks and wrinkles, caused by the thermal stresses is evaluated. Different growth modes are proposed in order to explain the smaller patch sizes observed at negative variations of temperature. The coefficient of friction (CoF) of the samples is measured using a pin-on-disk tribometer in non-lubricated conditions. Much lower CoF values than unprotected rubber are seen, which can be correlated with the observed patch size.  相似文献   

12.
蔺增  巴德纯  杨乃恒 《真空》2006,43(3):14-17
类金刚石(DLC)膜是含有sp^3杂化态的亚稳态非晶碳膜,是具有极高的硬度、化学稳定性和光学透明性的半导体材料。这篇综述介绍了用等离子体化学气相沉积DLC膜的沉积方法、所制备薄膜的特性及应用,最后展望了DLC膜的发展趋势。  相似文献   

13.
Carbon nanotube (CNT) films were grown on nickel foil substrates by thermal chemical vapor deposition (CVD) with acetylene and hydrogen as the precursors. The morphology and structure of CNTs depending on the acetylene flow rate were characterized by a scanning electron microscope (SEM), a transmission electron microscope (TEM) and a Raman spectrometer, respectively. The effect of acetylene flow rate on the morphology and structure of CNT films was investigated. By increasing the acetylene flow rate from 10 to 90 sccm (standard cubic centimeter per minute), the yield and the diameter of CNTs increase. Also, the defects and amorphous phase in CNT films increase with increasing acetylene flow rate. Translated from Journal of Inorganic Materials, 2006, 21(1): 75–80 [译自: 无机材料学报]  相似文献   

14.
杨发展  沈丽如  高翚  刘海峰  王世庆 《功能材料》2012,43(15):1994-1997
采用脉冲辉光放电等离子体气相沉积法在316不锈钢表面沉积膜层较厚的类金刚石膜层。利用拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FT-IR)、光学显微镜、显微硬度计和摩擦磨损实验机分别对膜层组成和微观结构及机械性能进行了表征。研究发现,通过脉冲辉光放电等离子体气相沉积法,在316不锈钢表面制备的类金刚石膜层光滑致密;Raman分析得到的ID/IG和IT/IG比值分别为0.72和0.22;FT-IR分析可知膜层含有较多的CHx组成的sp3键;摩擦磨损试验得到膜层的摩擦系数低至0.100,XPS分析膜层sp3含量高达60.7%和光学显微镜测量膜层的厚度达到7mm。由此可知沉积类金刚石膜层后,可以显著地改善316不锈钢表面的机械性能。  相似文献   

15.
Sk.F. Ahmed  D. Banerjee 《Vacuum》2010,84(6):837-842
Optical properties of fluorine doped diamond-like carbon (F:DLC) films deposited by the direct current plasma enhanced chemical vapor deposition (PECVD) technique were studied in detail. Surface morphologies of the F:DLC films were studied by an atomic force microscope, which indicated surface roughness increased with increase in at.% of F in the films. The chemical binding was investigated by X-ray photoelectron spectroscopic studies. Fourier transformed infrared spectroscopic studies depicted the presence of CFx (x = 1,2,3) and CHn (n = 1,2) bonding within the F:DLC films. Optical transparency and the optical band gap decreased with the fluorine incorporation in the DLC film. Optical band gap calculated from the transmittance spectra decreased from 2.60 to 1.95 eV with a variation of 0-14.8 at.% of F concentration in the diamond-like carbon films. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with the doping concentration.  相似文献   

16.
The paper presents investigations of the optical properties of thin high-refractive-index silicon nitride (SiNx) and diamond-like carbon (DLC) films deposited by the radio-frequency plasma-enhanced chemical vapor deposition method for applications in tuning the functional properties of optical devices working in the infrared spectral range, e.g., optical sensors, filters or resonators. The deposition technique offers the ability to control the film's optical properties and thickness on the nanometer scale. We obtained thin, high-refractive-index films of both types at deposition temperatures below 350 °C, which is acceptable under the thermal budget of most optical devices. In the case of SiNx films, it was found that for short deposition processes (up to 5 min long) the refractive index of the film increases in parallel with its thickness (up to 50 nm), while for longer processes the refractive index becomes almost constant. For DLC films, the effect of refractive index increase was observed up to 220 nm in film thickness.  相似文献   

17.
Titanium-doped diamond-like carbon (Ti-doped DLC) films with a Ti content of 1.1 at.% were synthesized on a Si substrate by a process that involves filtered cathodic vacuum arc (FCVA) and metal vapor vacuum arc (MeVVA) systems. The effect of annealing temperature on the microstructure, surface roughness, hardness and electrical resistivity of the resulting films was evaluated in this study. The Raman spectra revealed that the degree of graphitization of the Ti-doped DLC thin films was increased from 25 to 600 °C and the microstructure of the films is converted to a nano-crystalline graphite structure. The resulting films maintain a smooth surface after the annealing process. The hardness of the Ti-doped DLC films increases as the annealing temperature increases up to 400 °C because the induced defects and the inter-atomic bonds are repaired after the annealing process. But the hardness decreases at the higher temperature due to the increase of number and size of the nano-crystalline graphitic domains. Since the degree of graphitization of the thin films increases, the electrical resistivity of the Ti-doped DLC thin films decreases from 0.038 to 0.006 Ω cm.  相似文献   

18.
Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH4/Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH3)2N]4), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating.  相似文献   

19.
Diamond-like carbon films (DLC) and silicon doped diamond-like carbon films were deposited on Ni substrate by cathodic micro-arc discharge at room temperature in aqueous solutions. The deposit potential was 130 V. The structure of the films was characterized by a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Raman spectra and XPS analysis demonstrated that the films were diamond-like carbon clearly. SEM observation showed that the DLC films were uniform and the thickness was about 200 nm. Potentiodynamic polarization curve indicated the corrosion resistance of the Ni substrate was markedly improved by DLC films.  相似文献   

20.
The properties of diamond-like carbon (DLC) are strongly affected by the amount of carbon atoms bonded in sp2 and sp3 electronic hybridizations. Also the amount of incorporated hydrogen and oxygen plays an important role in the final properties of DLC films. Usually, the structure and chemical composition of thin DLC films can be changed by varying the deposition parameters. Therefore, the influence of PECVD process parameters on the properties of DLC films, grown on Si substrates, was investigated in this work.Thin DLC films were deposited in a CH4/H2 plasma by using Ar as a gas carrier. Different ratios of gas flows were used as a variable parameter of the PECVD process. The effect of cathodic ion bombardment was also investigated.The chemical composition of DLC specimens was studied by X-ray photoelectron spectroscopy (XPS). The ratio of carbon in sp2 and sp3 hybridizations was determined by analyzing the first derivative of Auger C KLL spectra. These results were also confirmed by the measurements of electrical resistivity. The changes of surface morphology and microadhesion were analyzed by Atomic Force Microscopy (AFM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号