首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new monomer, methacryloyloxybis(benzenesulfonyl hydrazide) (MAOBSH) containing a foamable sulfonyl hydrazide functional group after decomposition by heating, was synthesized from 4,4′‐oxybis(benzenesulfonyl hydrazide) (OBSH) with methacryloyl chloride, and used to obtain poly(MAOBSH) as a polymeric foaming agent (PFA) in dry tetrahydrofuran at 70 °C using azobisisobutyronitrile as an initiator. The structures of the synthesized MAOBSH and poly(MAOBSH) were identified using Fourier transform infrared and 1 H NMR spectroscopies. The decomposition temperature of poly(MAOBSH) was determined to be 245 °C and this temperature was decreased to around 160 °C by adding an activator such as surface‐treated urea to the polymer. The exothermic temperature and heat determined by the decomposition of the polymer were 256 °C and 287 J g?1. The amount of gas evolution for poly(MAOBSH) measured at the decomposition temperature was 74 mL g?1. Furthermore, polymers incorporating the PFA showed better skin and finer cell structure as well as better mechanical properties such as elongation and compression set than polymers with added OBSH due to the better compatibility of the developed PFA with polymers. © 2012 Society of Chemical Industry  相似文献   

2.
A polymerizable dimethacryloyl vinylphosphonate (DMVP) was developed as a novel crosslinking agent by esterification of vinylphosphonic acid and methacryloyl chloride in the presence of triethylamine. Then, poly(DMVP) (PDMVP) was generated by bulk polymerization solution at 30, 45, and 80 °C in the presence of a radical initiator. The resultant PDMVP, polymerized at 45 and 80 °C, could be dissolved in acetone, water, and N-methylpyrrolidone. However, PDMVP obtained at 30 °C showed to be insoluble in such solvents and became a gel instead. It was found that the formed gel was soluble when heating due to hydrolysis of the ester bonds in the polymer. Evidence was presented showing the thermal decomposition behavior of the PDMVP gel, which showed an irreversible solid-to-liquid phase transition.  相似文献   

3.
A new kind of ionic liquid monomer methyl 2-(3-vinylimidazolidin-1-yl)acetate bromide (MVIm-Br) and polymeric ionic liquid (PIL), poly(methyl 2-(3-vinylimidazolidin-1-yl)acetate bis(trifluoromethanesulfonyl)imide) (PMVIm-TFSI), were synthesized and characterized. Different compositions of polymer electrolytes were prepared by blending PMVIm-TFSI and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) with poly(methylmethacrylate-co-vinyl acetate) (P(MMA-VAc)). The thermal stability and ionic conductivity improved significantly when PMVIm-TFSI was added into P(MMA-VAc)/LiTFSI polymer. For the polymer electrolytes obtained, the highest ionic conductivity at 30 °C is 4.71 × 10−4 S cm−1 and the corresponding decomposition temperature is ca. 308 °C. Moreover, P(MMA-VAc)/PMVIm-TFSI/LiTFSI electrolyte membrane (transmittance ≥90%) can be used as the ion-conductive layer material for electrochromic devices, which reveal excellent electrochromic performance.  相似文献   

4.
Block copolymers of poly (propylene carbonate—cyclohexyl carbonate) (PPC-PCHC) were successfully synthesized by a one-pot method with the zinc complex catalyst (Zn2G). The IR and 1H-NMR and 13C-NMR spectra verified the introducing of PCHC segments in the copolymers. The GPC curves of the copolymers appeared only one peak and the DSC results showed three glass transition temperatures at 40 °C, 66 °C and 115 °C, indicating the three-block copolymer structure. TGA tests revealed that the thermal decomposition temperature of the synthesized block copolymers increased up to about 300 °C. The mechanical properties proved to be also enhanced greatly as evidenced by static and dynamic mechanical tests. The thermal and mechanical properties of the resultant block copolymers lay between those of PPC and PCHC, demonstrating the desired properties of a polymer can be achieved via block copolymerization.  相似文献   

5.
A series of high molecular weight copolymers based on poly(L-lactic acid) (PLLA) as the biodegradable aliphatic segments, poly(butylene terephthalate) (PBT) as the rigid aromatic segments and hydrophilic poly(ethylene glycol) (PEG) as the soft segments were synthesized with the aim of developing novel polymer materials which could combine high physical properties with good biodegradability. Via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO), poly(L-lactic acid) oligomer (OLLA) and PEG, biodegradable aliphatic/aromatic copoly(ester-ether)s, poly(butylene terephthalate-co-lactate-co-ethylene glycol) (PBTLG), were prepared. The effect of the introduction of PEG soft segments on the synthesis, mechanical properties and thermal stabilities as well as the degradation behaviors of the final copolymers was investigated. When the PEG units were incorporated into the polymer main-chains, the weight-average molecular weight of the copolymers increased from 53,700 g/mol to 177,000 g/mol and the tensile strength (σ) improved by nearly two times from 6.5 MPa to 12.8 MPa for PBTLG1000-0.5. The glass-transition temperature (T g) gradually decreased from 26.9 °C down to −5.5 °C and a depression of melting temperature was observed with the increase of PEG content. According to the in vitro hydrolytic degradation observation, all of the copolymers underwent significant degradation in phosphate buffer solution at 37 °C and the water absorption as well as the degradation rate of PBTLGs displayed a strong dependency on the PEG content.  相似文献   

6.
A poly(imide benzoxazole) was prepared directly from trimellitic anhydride chloride and 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane (BisAPAF) monomers in a two‐step method. In the first step, a poly(hydroxyamide amic acid) precursor was synthesized by the low‐temperature solution polymerization in an organic solvent. Subsequently, thermal cyclodehydration of the poly(hydroxyamide amic acid) precursor at 350°C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.22 dL/g. The cyclized poly(imide benzoxazole) showed a glass transition temperature (Tg) at 329°C and a 5% weight loss temperature at 530°C in nitrogen and at 525°C in air. The poly(imide benzoxazole) is amorphous as evidenced by the wide‐angle X‐ray diffraction measurement. The structures of the precursor polymer and the fully cyclized polymer were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2388–2391, 2003  相似文献   

7.
Ring-opening polymerizations of γ-glycidoxypropyltrimethoxysilane (GPTMS) were carried out by using multi-metal cyanide (MMC) catalyst and the synthesized homopolymer was a comb-shaped polymer with regular structure. The structure of the polymer obtained (P-GPTMS) was characterized by FTIR, 1H-NMR, and 29Si-NMR spectroscopy, and the molecular weight and its distribution were analyzed by size-exclusion chromatography with multi-angle laser light scattering (SEC-MALLS). The thermal behavior of P-GPTMS was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). P-GPTMS with high molecular weight (M n = 18,000–80,000) and narrow molecular weight distribution (1.10–1.35) were synthesized when the dosage of MMC catalyst was 0.1% and polymerization temperature was 130 °C. The molecular weight of the product could be adjusted by controlling the polymerization time. The T g of P-GPTMS is in the range of −34 to −30 °C. On the basis of the TGA data, the decomposition rate of P-GPTMS reached its peak at 374.14 °C and the entire decomposition stopped at 600 °C.  相似文献   

8.
The phase transition observed by various methods in poly(vinyl methyl ether)/water systems at around 18 °C has been assigned by some investigators to the pre-melting of water and by others to a glass transition of the polymer. In this study, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry were used to identify this transition in radiationally crosslinked poly(vinyl methyl ether) hydrogels, as well as to analyse sub-zero relaxation processes in such a three-phase (polymer/ice/liquid water) system. The process at 18 °C was related to the pre-melting of water induced by the segmental motions of the polymer; however, it was seen to be one transition due to the cooperative motions of both compounds. The atypical (two regimes) temperature dependence of the segmental motion process was observed and was related to confinement of the polymer chains between ice clusters below approximately ?24 °C; furthermore, the main dielectric process of hexagonal ice was identified and a Maxwell-Wagner effect was observed.  相似文献   

9.
A well-defined, dual temperature- and pH-responsive drug carrier was synthesized through the radical copolymerization of methacrylic acid, N-isopropylacrylamide, and an N-(methacryloyl)glycylglycine 4-nitrophenyl ester. When the anticancer agent gemcitabine or antibiotic sulfamethoxazole was conjugated with a polymer and heated beyond its low critical solution temperature (40 °C), a dual temperature- and pH-induced phase transition was observed. This temperature was considered ideal for activating drug aggregation under hyperthermic and acidic conditions. The structure and properties of polymer drugs were investigated using nuclear magnetic resonance, Fourier transform infrared spectrometry, ultraviolet–visible absorption, transmission electron microscopy, and gel permeation chromatography. At a critical micelle concentration of 1 mg/mL, both polymer drugs formed micellar structures with diameters ranging from 50 nm to 150 nm, based on TEM image. These micelles exhibited higher pharmacological efficacy than the free drug alone did, and the cytotoxicity at the target site was substantially enhanced compared with that of the polymer–drug conjugate formed under normal physiological conditions.  相似文献   

10.
Macromonomeric azo initiator containing biodegradable poly(ε-caprolactone, (PCL) was synthesized by the condensation reaction of PCL with 4,4′-azobis(4-cyanopentanoyl chloride) and methacryloyl chloride. This macromonomeric azo initiator (MIM–PCL) was further used in the polymerization of styrene (St) or methylmethacrylate (MMA) via a radical initiated process at 60°C in bulk in order to obtain polystyrene (PS)-b-PCL or poly(methyl methacrylate) (PMMA)-b-PCL crosslinked block copolymers. Thermal decomposition kinetics of MIM–PCL and its copolymers were studied by using thermogravimetric analysis and differential scanning calorimetry (DSC). DSC traces of MIM–PCL showed two different exotherms, at 98 and 127°C. The first exotherm, observed at 98°C, was due to the polymerization of the terminal methacrylic groups; the other was due to the exothermic decomposition of azo groups of MIM–PCL. PCL-b-PS and PCL-b-PMMA crosslinked block copolymers showed single glass transition temperatures due to the compatibility of the crosslinked block segments. The polymer–solvent interaction parameter of PCL in chloroform was determined by vapor pressure osmometry to be 0.1 for the PCL–chloroform system at 30°C. The average molecular weights between junction points of crosslinked homo PCL were calculated by using the Flory–Rehner equation. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1149–1157, 1998  相似文献   

11.
A new kind of polymeric ionic liquid (PIL) membrane based on guanidinium ionic liquid (IL) with ester and alkyl groups was synthesized. On addition of guanidinium IL, lithium salt, and nano silica in the PIL, a gel PIL electrolyte was prepared. The chemical structure of the PIL and the properties of gel electrolytes were characterized. The ionic conductivity of the gel electrolyte was 5.07 × 10−6 and 1.92 × 10−4 S cm−1 at 30 and 80 °C, respectively. The gel electrolyte had a low glass transition temperature (T g ) under −60 °C and a high decomposition temperature of 310 °C. When the gel polymer electrolyte was used in the Li/LiFePO4 cell, the cell delivered 142 mAh g−1 after 40 cycles at the current rates of 0.1 C and 80 °C.  相似文献   

12.
《Ceramics International》2022,48(1):674-683
In order to protect carbon fibers (CF) from oxidation damage during sintering process, rod-like Mg-doped nano-hydroxyapatite (Mg-nHA) with an increased thermal decomposition temperature and reduced sintering temperature was synthesized by hydrothermal method. The synthesized bone-like Mg-nHA with similar composition and morphology to bone apatite was used as the matrix to prepare CF reinforced Mg-nHA composites (CF/Mg-nHA) at a low temperature of 700 °C by pressureless sintering. The increase of temperature slightly influenced the growth of Mg-nHA prepared by hydrothermal method from 160 °C to 200 °C. The Mg-nHA were short and rod-like in structure with a length of approximate 100 nm. When doping 1% magnesium, the decomposition temperature of Mg-nHA increased by 100 °C compared with that of nHA. This can protect CF from oxidation damage which is often encountered when sintering CF reinforced hydroxyapatite composites at high temperature and enhance reinforcing effects of CF. The bending strength of CF/Mg-nHA with 1 wt% CF was 8.51 MPa, which increased by 19.5% compared with Mg-nHA. Alternatively, the rod-like Mg-nHA was prepared on the surface of CF by electrochemical deposition and Mg-nHA coated CF was used to reinforce Mg-nHA, the coefficient of thermal expansion mismatch between CF and HA matrix could be mitigated. The compressive strength of Mg-nHA coated CF reinforced Mg-nHA (CF/Mg-nHA/Mg-nHA) composites with 0.5% CF sintered at 800 °C were 41.3 ± 1.56 MPa, which was attributed to the improved strengthening effect of CF and the good interface between CF and Mg-nHA matrix.  相似文献   

13.
Nanocrystalline La0.9Sr0.1Al0.85Mg0.1Co0.05O2.875 (LSAMC) powders were synthesized via a polymeric method using poly(vinyl alcohol) (PVA). The effect of PVA content on the synthesized powders was studied. When the ratio of positively charged valences (Mn+) to hydroxyl groups (OH) is 1.5:1, crystalline LaAlO3 could be obtained at such a low calcination temperature as 700 °C. While at 900 °C the ratio is of less importance, since pure LaAlO3 perovskite could be formed for all powders after calcination at 900 °C. Thermal analysis (TG/DTA) was utilized to characterize the thermal decomposition behaviour of precursor powders. The chemical structure of the calcined powder was studied by Fourier transform infrared (FTIR) spectroscopy. The powder morphology and microstructure were examined by SEM. Dense pellets with well-developed submicron microstructures could be formed after sintering at 1450 °C for 5 h. Compared with the solid-state reaction method, the sintering temperature is substantially lower for powder prepared by the PVA method. This is due to the ultrafine and highly reactive powder produced.  相似文献   

14.
A novel methacrylate monomer containing benzofuran side group, 2‐(5‐bromo benzofuran‐2‐yl)‐2‐oxoethyl methacrylate (BOEMA), was synthesized from esterification reaction of 2‐bromo‐1‐(5‐bromo benzofuran‐2‐yl) ethanone with sodium methacrylate at 85°C in the presence of 1,4‐dioxane solvent. After characterization with Fourier transform infrared spectrophotometer, nuclear magnetic resonance (1H‐NMR and 13C‐NMR), its homopolymerization was carried out by free radical polymerization at 60°C in the presence of benzoyl peroxide initiator and 1,4‐dioxane solvent. The glass transition temperature (Tg) of the synthesized novel polymer, poly(2‐(5‐bromo benzofuran‐2‐yl)‐2‐oxoethyl methacrylate) [poly(BOEMA)], was determined to be 137°C with differential scanning calorimetry technique. Thermal degradation kinetics of poly(BOEMA) was investigated by thermogravimetric analysis method at different heating rates with 5°C/min intervals between measurements. From dynamic measurements, the analysis of each process mechanism of Coats–Redfern and Van Krevelen methods showed that the most probable model for the decomposition process of poly(BOEMA) homopolymer agrees with the random nucleation, F1 mechanism. The apparent decomposition activation energies of poly(BOEMA) by Kissinger's and Flynn–Wall–Ozawa methods in the studied conversion range were 188.47 and 180.13 kJ/mol, respectively. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
Biodegradable copolymer poly(butylene succinate-co-terephthalate) (PBST), with 70 mol% butylene terephthalate (BT), was melt-spun into fibers with take-up velocity of 2 km/min. The mechanical and thermal properties of the as-spun fibers were investigated through tensile test, DSC and TGA. Compared to poly(butylene terephthalate) (PBT) fibers, PBST fibers exhibited lower initial tensile modulus and higher tensile elongation at break which indicated their better flexibility. DSC results showed high melting temperature (ca.180.7 °C) of PBST fibers helpful to the textile processing compared to other biodegradable polyesters. Furthermore, isothermal crystallization behaviors of PBST fibers at low and high supercoolings were investigated by DSC and DLI, respectively. The measurement of crystallization kinetics at low supercoolings indicated that Avrami exponent n for PBST fibers was at a range of 2.9 to 3.3, corresponding to the heterogeneous nucleation and a 3-dimensional spherulitic growth. Similar results were given for isothermal crystallization behavior at high supercoolings investigated by DLI technique. Additionally, the equilibrium melting temperature of PBST fibers was obtained for 206.5 °C by Hoffman-Weeks method. Further investigation through DLI measurement provided the temperature at maximum crystallization rate for PBST fibers located at about 90 °C, which was very useful to polymer processing.  相似文献   

16.
Herein we report a method that improves the optical properties of polyimide-aramid (PIA) by the addition of a large quantity of silica. High silica loading was successful due to the good compatibility of synthesized unique silane end-capped polyimide-aramid (PIA) with in-situ formed silica nanoparticles. The prepared polymer films exhibited excellent optical properties, stability at 400 °C, a high decomposition and glass transition temperature, and a relatively low coefficient of thermal expansion (CTE) close to that of a glass substrate. These films may have potential applications in high-temperature (over 400 °C) electronic and optoelectronic manufacturing processes as a flexible transparent substrate.  相似文献   

17.
2-Furyloxirane(FO) with purity of over 99% was prepared in 80% yield by epoxidation of furfural with trimethylsulfonium chloride and potassium hydroxide in acetonitrile/water solution. Polymerization of FO was realized using tri-isobutyl aluminum (Al(i-Bu)3) as catalyst, when Al(i-Bu)3 concentration was 0.009 mol/L, poly(2-furyloxirane)(PFO) with M n of 3.4 kg/mol and a polydispersity index of 1.5 was obtained in yield of 88% after polymerization at 25 °C for 48 h. The corresponding PFO showed glass transition temperature (T g ) of Ca. 1 °C and 5 wt% thermal decomposition temperature(T d ) of 260 °C. The obtained PFO was almost 100% head-to-tail structure, and it was a good plasticizer and thermal stabilizer for poly(propylene carbonate)(PPC), an alternate copolymer of propylene oxide and carbon dioxide. For PFO/PPC polyblend with PFO loading of 2 wt%, its T d increased by 50 °C from 214 °C of pure PPC to 264 °C, while its elongation at break increased from 13% of pure PPC to 29%.  相似文献   

18.
A highly refractive and transparent poly(arylene sulfide sulfone) (PASS) containing pyrimidine (or pyridazine) unit has been developed. The polymer was prepared by a polycondensation reaction of 4,4′-dimercaptodiphenyl sulfone (DMDPS) and 4,6-dichloropyrimidine (DCPM) (or 3,6-dichloropyridazine (DCPD)). They showed good thermal stabilities such as a relatively high glass transition temperature of 193–202 °C and a 5% weight loss temperature (T5%) of 370–372 °C. The optical transmittance of the polymer at 450 nm is higher than 81%. The heterocycles unit and plural –S– linkages provides the polymer with a high refractive index of 1.737–1.743 at 633 nm and a low birefringence of 0.003–0.004.  相似文献   

19.
New zinc pimelate catalysts used for copolymerization of carbon dioxide and propylene oxide have been synthesized in high yield by a magnetic stirring method. The regular molecular structure of the zinc pimelate was confirmed by Fourier‐transform infrared spectroscopy and wide‐angle X‐ray diffraction techniques. Accordingly, poly(propylene carbonate) (PPC) can be synthesized from carbon dioxide and propylene oxide using these zinc pimelate catalysts. High catalytic efficiency (95.2 gram polymer per gram catalyst or 21 300 g of polymer per mole of zinc) was achieved by optimizing the PO/catalyst ratio. NMR measurement revealed that the PPC synthesized had an alternating copolymer structure. The thermal properties of PPC were determined by modulated differential scanning calorimetry and thermogravimetric analysis. The results demonstrated that the PPC copolymer exhibited an extremely high glass transition temperature of 44.27 °C and decomposition temperature of 257 °C, comparable with values reported in literature. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
3‐(1‐Cyclohexyl)azetidiniyl methacrylate (CyAMA), a new methacrylate monomer, was synthesized by reaction of the sodium salt of 1‐cyclohexylazetidin‐3‐ol with methacryloyl chloride. The monomer was polymerized at 60 °C in 1,4‐dioxane solution using 2,2′‐ azobisisobutyronitrile (AIBN) as an initiator. CyAMA and poly(CyAMA) were characterized by FTIR and 1H and 13C NMR spectroscopy. The activation energy of the initiation step of the polymerization was estimated from initial rates, and the number average molecular weight of the homopolymer was determined by gel permeation chromatography (GPC). The antibacterial and antifungal effects of the monomer and homopolymer were investigated on various bacteria and fungi. The thermal stability of poly(CyAMA) was investigated by TGA, and its glass transition temperature was determined by DSC as 93 °C. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号