首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray amorphous V2AlC and hexagonal (V,Al)2Cx thin films were synthesized by magnetron sputtering from a compound target with the composition of V2AlC. The crystallization kinetics was investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). During continuous heating up to 1200 °C, one exothermal peak is observed between 565 and 675 °C. XRD data suggest that the DSC peak is associated with the formation of V2AlC. The activation energy of crystallization of V2AlC is ~ 308 kJ/mol based on the Kissinger approach. This value is close to the 287 kJ/mol activation energy obtained here for the transformation of magnetron sputtered (V,Al)2Cx thin films to V2AlC. The here reported phase formation temperature of V2AlC is about 800 °C lower than during hot pressing of elemental powders.  相似文献   

2.
New materials for a transparent conducting oxide film are demonstrated. Highly transparent Zn2In2O5 films with a resistivity of 3.9 × 10−4 Ω cm were prepared on substrates at room temperature using a pseudobinary compound powder target composed of ZnO (50 mol.%) and In2O3 (50 mol.%) by r.f. magnetron sputtering. MgIn2O4---Zn2In2O5 films were prepared using MgIn2O4 targets with a ZnO content of 0–100 wt.%. The resistivity of the deposited films gradually decreased from 2 × 10−3 to 3.9 × 10−4 Ω cm as the Zn/(Mg + Zn) atomic ratio introduced into the films was increased. The greatest transparency was obtained in a MgIn2O4 film. The optical absorption edge of the films decreased as the Zn/(Mg + Zn) atomic ratio was increased, corresponding to the bandgap energy of their materials. It was found that the resistance of the undoped Zn2In2O5 films was more stable than either the undoped MgIn2O4, ZnO or In2O3 films in oxidizing environments at high temperatures.  相似文献   

3.
Growth and Raman scattering characterization of Cu2ZnSnS4 thin films   总被引:1,自引:0,他引:1  
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure.  相似文献   

4.
In this paper we present some experimental results concerning the current noise produced during the resistive transition in MgB2 thin films. Preliminary investigations evidenced the presence of electrical noise whose power spectrum has a region of the 1/fn type with n 3. We suggest that the noise may originate from abrupt rearrangement of the current distribution inside the specimen during the percolative process of a diphasic system. Experimental measurements of the spectral components of the current noise taken during the resistive transition will be given and discussed.  相似文献   

5.
P-type transparent conducting thin films of copper aluminium oxide were prepared by DC sputtering of polycrystalline CuAlO2 target, which was fabricated by heating a stoichiometric mixture of Cu2O and Al2O3 at 1375 K for 24 h. Thin films of CuAlO2 were deposited on Si (4 0 0) and glass substrates. The sputtering was performed in Ar+O2 (40 vol.%) atmosphere and the substrate temperature was 453 K. X-ray diffraction spectra of the films showed the peaks that could be assigned with those of the crystalline CuAlO2. Fourier transform infrared spectra showed Cu---O, Al---O, O---Cu---O bonding. UV–Vis–NIR spectrophotometric measurement showed high transparency of the films in the visible region. Both direct and indirect band gaps were found to exist and their corresponding estimated values were 3.66 and 2.1 eV, respectively. The room temperature conductivity of the film was fairly high and was of the order of 0.08 S cm−1, while the activation energy was 0.26 eV. Thermoelectric power measurement indicated positive value of Seebeck coefficient and its room temperature value was +128 μV K−1. Positive value of Hall coefficient (RH=+16.7 cm3 C−1) also confirmed p-type conductivity of the films.  相似文献   

6.
Fe-O thin films with different atomic ratio of iron to oxygen were deposited on glass and thermally oxidized silicon substrates at temperatures of 300, 473 and 593 K, by reactive magnetron sputtering in Ar+O2 atmosphere. The composition and structure of the thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrical resistivity. It was found from XRD that with increasing the oxygen partial pressure in the working gas, the crystalline structure of the Fe-O films deposited at the substrate temperature of 473 K gradually changed from α-Fe, amorphous Fe-O, Fe3O4, γ-Fe2O3 to Fe21.34O32. The structure and chemical valence of the Fe3O4 films were analyzed by electron microscopy and XPS, respectively.  相似文献   

7.
We have studied the influence of synthesis temperature on chemical composition and mechanical properties of X-ray amorphous boron-oxygen-hydrogen (B-O-H) films. These B-O-H films have been synthesized by RF sputtering of a B-target in an Ar atmosphere. Upon increasing the synthesis temperature from room temperature to 550 °C, the O/B and H/B ratios decrease from 0.73 to 0.15 and 0.28 to 0.07, respectively, as determined by elastic recoil detection analysis. It is reasonable to assume that potential sources of O and H are residual gas and laboratory atmosphere. The elastic modulus, as measured by nanoindentation, increases from 93 to 214 GPa, as the O/B and H/B ratios decreases within the range probed. Hence, we have shown that the effect of impurity incorporation on the elastic properties is extensive and that the magnitude of the incorporation is a strong function of the substrate temperature.  相似文献   

8.
Normal metal, ohmic contacts to high-temperature superconductor (HTSC) materials will be used to form via structures between HTSC interconnect levels, and also, substrate bonding pads in a superconducting multichip module (SMCM). Specific contact resistivities below 10−8 Ω cm2 will be required for such contacts to control signal attenuation and local contact heating of the LN2cooled SMCM. Previous work on normal metal/superconducting contacts has not focused on metallization schemes which will be stable during subsequent high-temperature processing. Metal contacts of gold, silver, and palladium were formed on superconducting thin films of YBa2Cu3O7-δ via evaporation and sputtering through a shadow mask followed by annealing in various ambients and at several temperatures. Palladium contacts oxidized readily during anneal, and sputtered gold contacts required additional processing and exhibited higher specific contact resistivities. The best contacts were obtained by a controlled-cooling oxygen anneal of evaporated gold or silver, as indicated by normal-state specific contact resistivities of 3 × 10−5 Ω cm2 and 4 × 10−5 Ω cm2, respectively. This work differs from previously published results by describing contacts which required no extensive preparation of the HTSC surface and were stable to 700 °C, indicating these contacts would be compatible with subsequent high-temperature processing of the additional HTSC layers required in a multi-level SMCM.  相似文献   

9.
Strain analysis of photocatalytic TiO2 thin films on polymer substrates   总被引:1,自引:0,他引:1  
Titania (TiO2) thin films have been deposited on polymer sheets by magnetron sputtering at room temperature. Previous X-ray diffraction experiments revealed, for a wide range of deposition parameters, that the as-deposited titania thin films are predominantly amorphous; however, Raman scattering experiments revealed small traces of crystalline phases. The photocatalytic behaviour of the titania coatings was determined by combined ultra-violet (UV) irradiation and absorption measurements of a chosen dye (pollutants) in the presence of this catalyst. In order to assess the mechanical behaviour of the as-sputtered films, the film/substrate composite system was loaded unidirectionally using a tensile testing machine. As the system was stretched, cracks transverse to the loading direction developed in the film. The number of cracks increased as the applied strain increased, thus the relation between the measured crack density and the applied strain has been used to characterize the film strength and has also been correlated with the film photocatalytic efficiency. As a result of moderate fissuring on the titania film, it was found that for strain deformations up to 5% the photocatalytic activity is enhanced due to the exposure of more catalyst surface area for the pollutant to be adsorbed and subsequently dissociated upon UV illumination.  相似文献   

10.
We have measured point contacts with a gold tip on Bi2Sr2CaCu2O8+y thin films and Bi2Sr2CaCu2O8+y/SrTiO3 double layers. The results show tunneling or direct conductivity behaviour depending on the junction parameters and can be fitted by corresponding theoretical models. From fitting procedure of differential characteristics by modified Blonder-Tinkham-Klapwijk (BTK) theory the Fermi velocity vF=5×105 m/s, ratio 2(4.2K)/kTc=7.9 and coherence length ab=3.5 nm were obtained. The changing of the interface transmission by additional layers of different thickness corresponding to metallic or insulating behaviour is shown. In the frame of the inelastic scattering of quasiparticles the linear background of differential conductance is discussed.This work was supported by German BMFT under Contract No.l3N5924A and Slovak Grant Agency for Sciences (Grants Nos. 2/990125/93 and 2/999185/92).  相似文献   

11.
Thin films of copper indium selenide (CuInSe2) were produced by radio frequency (RF) sputtering due to the ability of this technique to achieve stoichiometric layers and its scalability to large-area devices. Results of energy dispersive analysis of X-rays (EDAX) revealed that the sputtered films were near to stoichiometry for substrate temperatures TSub not exceeding 200 °C. X-ray diffraction (XRD) patterns indicate that the films exhibited some pattern similar to that of bulk crystals of tetragonal chalcopyrite, predominantly [112] oriented. Based on the XRD patterns, the lattice parameters and grain sizes were examined. The band gap Eg, estimated from optical absorption data, was between 0.6-1.08 eV, depending on sputtering conditions such as substrate temperature and bias voltage. High optical absorption coefficients (> 104 cm− 1) were found.  相似文献   

12.
Based on the concept that the electron-hole separation effect caused by a different band-gap structure would improve its hydrophilicity, anatase-TiO2/Cr-doped TiO2 thin films were synthesized by DC magnetron sputtering. The optical band gaps of TiO2 thin films decreased from 3.23 to 2.95 eV with increasing Cr-doping content. Multilayer TiO2 thin films with different band gaps exhibited a superhydrophilicity under UV illumination. In particular, in anatase TiO2 (3.23 eV)/4.8% Cr-doped TiO2 (2.95 eV), the hydrophilicity, which indicated a contact angle of less than 20°, lasted for 48 h in the dark after UV illumination was discontinued. This outstanding result has rarely been reported for TiO2 thin films, which confirmed that the prominent superhydrophilicity of anatase TiO2/Cr-doped TiO2/glass could be attributed to the retardation of electron-hole recombination caused by the band-gap difference.  相似文献   

13.
Carbon-doped TiO2 thin films in the anatase phase with dopant concentrations of 1.1, 0.9, and 0.7 mol% were fabricated by a radio-frequency magnetron sputtering method. Dopant carbons were located at the oxygen sites. Carbon substitution caused the absorbance edge and/or the shoulder of TiO2 to shift to a higher wavelength region. Carbon-doped TiO2 thin films underwent a hydrophilic conversion when irradiating with visible light (400–530 nm). The hydrophilic property under visible light was inferior to that under ultraviolet light, which is explained by considering that the visible light sensitivity originates from the localized C 2p formed in the band-gap.  相似文献   

14.
Nanocrystalline pure and gold doped SnO2(Au:SnO2) films were prepared on unheated glass substrates by dc magnetron reactive sputtering and, subsequently, the as deposited films were annealed in air. The films structure, surface morphology, photoluminescence, electrical and optical properties were investigated. After annealing the as deposited SnO2 films, crystallinity increased and the surface roughness decreased. The intensity of PL peaks increases sharply with the annealing temperature. The optical transmittance of the films was around 89% after annealing the as deposited SnO2 films at 450 °C. The as deposited Au:SnO2 films show better crystallinity than the as deposited SnO2 films, the average grain size was around 4.4 nm. The emission peaks of Au:SnO2 films are slightly blue shifted as compare to undoped SnO2 films. The Au:SnO2 films show the lowest electrical resistivity of 0.001 Ωcm with optical transmittance of 76%, after annealing at 450 °C.  相似文献   

15.
Titanium dioxide films are known for their hydrophilic and photocatalytic characteristics. Increasing specific surface area and doping can enhance their photocatalytic activity and hydrophilicity. We report here results regarding the enhancement of the photocatalytic properties of titania by both controlling surface morphology and the anatase/rutile ratio. The samples were deposited on glass, indium tin oxide covered glass, and SrTiO3 by sputtering and laser ablation techniques. Film structure and surface morphology were investigated by X-ray diffraction and atomic force microscopy. Film hydrophilicity was assessed from contact angle measurements during- and post-irradiation with UV light. The contact angle data are discussed in terms of the synergic effects of surface morphology, structure and composition of the films.  相似文献   

16.
Thin films of TiO2 doped with vanadium and palladium, prepared by the magnetron sputtering method, were studied by means of X-ray diffraction (XRD), Scanning Electron Microscopy with Energy Disperse Spectrometer (SEM-EDS) and Atomic Force Microscopy (AFM). Investigations have brought important information about microstructure due to dopant incorporation in the TiO2 host lattice. Directly after deposition thin films were XRD-amorphous and SEM investigations did not reveal details on the microstructure. Analysis of the topography of prepared thin films required application of Atomic Force Microscope. The AFM images show that as-deposited sample was dense with grain sizes varied in the range of 5.5 nm-10 nm, that indicated high quality nanocrystalline behavior. Additional annealing results in the formation of three phases in the thin film, e.g. (Ti,V)O2 — solid solution, PdO and metallic inclusions of Pd. SEM-EDS system allowed analysis of the elemental composition, especially the V one, which lines have not been evidenced in the XRD diffraction pattern. EDS maps show homogenous distribution of elements Ti, O, V, Pd in prepared thin films.  相似文献   

17.
Alumina/titanium silicon carbide (Al2O3-Ti3SiC2) composites and its functionally graded materials (FGMs) were fabricated by a powder metallurgy processes and their microstructure and properties were investigated, respectively. The experimental results showed that the Vickers hardness of composites decreased with increasing Ti3SiC2 content while the fracture toughness and strength exhibited the opposite trend. Minimum Vickers hardness (4 GPa), maximum strength (598 MPa) and maximum toughness (11.24 MPa m1/2) were reached in the pure Ti3SiC2 material. Strength and hardness of FGMs were evaluated. Observation using an scanning electron microscope (SEM) indicated that the presence of Ti3SiC2 of FGMs inhibited the growth of alumina grains through a pinning mechanism. The study shows that the combination of the layered Ti3SiC2 structure and the fine alumina grains can result in a Al2O3-Ti3SiC2 composites possessing a high toughness and low Vickers hardness without a sacrifice in the strength.  相似文献   

18.
The structural properties of a potassium lithium niobate (KLN; K3Li2Nb5O15) thin film deposited by rf-magnetron sputtering on a Pt/Ti/SiO2/Si(100) substrate were investigated. The crystalline structures of the Pt under layer and KLN thin films were examined using θ-2θ, θ-rocking, and mesh scan X-ray diffraction (XRD). The XRD results revealed that the Pt under layer was a strong (111) direction orientated poly crystal. Unlike the Pt under layer film, the KLN(001) peak was found to consist of two separate peaks, one with a broad full width half maximum (FWHM) and the other with a narrow FWHM, indicating that the KLN film had a single crystalline structure. The surface and cross-section morphology were investigated using a scanning electron microscope (SEM). Accordingly, from the results of the SEM and XRD experiments, it was concluded that the KLN film was composed of small single crystals, which had a four-fold symmetry morphology with a c-axis normal to the substrate.  相似文献   

19.
The investigation of bulk Cr2AlC ceramic fabricated by Spark Plasma Sintering (SPS) from coarse powders (CAC10) and fine powders (NCAC10) in the temperature range of 1100-1400 °C was carried out. The XRD results indicate that Cr2AlC, as major phase, always appears with minor and trace amount of Cr7C3 and Cr2Al respectively in both NCAC10 and CAC10 samples and the amounts of later two phases decrease with increase in temperature. However, the Cr2AlC phase content in NCAC10 is higher than that of CAC10 sintered at the same temperature. The micrographs of back-scattered SEM show that grains with smaller size and pores with fewer amounts appear in SPSed NCAC10 in comparison to that of CAC10. As consequence, the higher hardness (5.6 GPa) of NCAC10 than that (3.9 GPa) of CAC10 was obtained. The patterns of XRD, microstructure and hardness of samples HPed at 1400 °C for the same composition were also presented for comparison.  相似文献   

20.
Al2O3/Al films (period thickness Λ=20, 40 nm) were deposited onto (1 0 0) silicon substrate by reactive r.f. sputtering for substrate temperatures (Ts) ranging from −90 to 600 °C. Secondary ion mass spectrometry demonstrated the deposition of Al2O3/Al stratified thin films with the generation of periodic signals. X-ray reflectometry confirmed the periodicity with the presence of Bragg peaks in the experimental patterns. Nevertheless, the multilayered character of Al2O3/Al films is less and less pronounced as Ts increases. At low Ts, the relevant parameter to account for the absence of abrupt interfaces is the roughness of layers due to the aluminium layers, while at high Ts, the chemical interdiffusion clearly dominates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号