首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin (∼5.0 nm) Y2O3 films were deposited on n-type Si (1 0 0) substrate using RF magnetron sputtering. Detailed studies on the effects of post-deposition annealing (PDA) temperatures (400, 600, 800, and 1000 °C) in argon ambient on these films were performed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscopy, and atomic force microscopy. Interfacial layer (IL) of SiO2 in between Y2O3 and the Si substrate for sample annealed from 400 to 800 °C had been suggested from the results of FTIR. As for sample annealed at 1000 °C, presence of IL might consist of both Y2Si2O7 and/or SiO2 through the detection of Y2Si2O7 compound and Si–O chemical bonding from XRD and FTIR analysis, respectively. For as-deposited sample, no detectable chemical functional group at the IL was recorded. Electrical characteristics of the Y2O3 films were acquired by fabricating metal-oxide–semiconductor capacitor as test structure. An improvement in the breakdown voltage (VB) and leakage current density (J) was perceived as the PDA temperature increased. Of the PDA samples, the attainment of the lowest effective oxide charge, interface trap density, total interface trap density, and the highest barrier height at 1000 °C had contributed to the acquisition of the highest VB and lowest J.  相似文献   

2.
Integration of NiSix based fully silicided metal gates with HfO2 high-k gate dielectrics offers promise for further scaling of complementary metal-oxide- semiconductor devices. A combination of high resolution transmission electron microscopy and small probe electron energy loss spectroscopy (EELS) and energy dispersive X-ray analysis has been applied to study interfacial reactions in the undoped gate stack. NiSi was found to be polycrystalline with the grain size decreasing from top to bottom of NiSix film. Ni content varies near the NiSi/HfOx interface whereby both Ni-rich and monosilicide phases were observed. Spatially non-uniform distribution of oxygen along NiSix/HfO2 interface was observed by dark field Scanning Transmission Electron Microscopy and EELS. Interfacial roughness of NiSix/HfOx was found higher than that of poly-Si/HfO2, likely due to compositional non-uniformity of NiSix. No intermixing between Hf, Ni and Si beyond interfacial roughness was observed.  相似文献   

3.
This paper describes the effect of postdeposition annealing on the structural and electrical characteristics of high-k Dy2TiO5 dielectric films deposited on Si (100) through reactive cosputtering. We used X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy to investigate the structural and morphological features of these films after they had been subjected to annealing at different temperatures. The Dy2TiO5 dielectrics annealed at 800 °C exhibited excellent electrical properties such as high capacitance value, small density of interface state, almost no hysteresis voltage, and low leakage current. This phenomenon is attributed to a rather well-crystallized Dy2TiO5 structure and the reduction of the interfacial layer at oxide/Si interface. This film also shows almost negligible charge trapping under high constant voltage stress.  相似文献   

4.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

5.
Transparent and crack-free Bi2Ti2O7 thin films with strong (111) orientation were successfully prepared on n-Si(100) by chemical solution deposition (CSD) using bismuth nitrate and titanium butoxide as starting materials. The structural properties were studied by X-ray diffraction. The dielectric constant at 100 kHz at room temperature was 118 and loss factor was 0.074, for a 0.4-μm-thick film annealed at 500°C for 30 min. The leakage current density was 4.06×10−7 A/cm2 at an applied voltage of 15 V.  相似文献   

6.
ZnO:Al network films were grown on nanochannel Al2O3 substrates at 300 K by direct current magnetron sputtering with an oblique target. The film thicknesses are 60 nm, 160 nm and 190 nm. The holes of the network films diminish with increasing film thickness. For the 60-nm thick film, the network is formed by connecting grains. For the 160-nm and 190-nm thick films, however, the network is formed by connecting granules. The granules consist of many small grains. All the network films have a wurtzite structure. The 60-nm and 160-nm thick network films mainly have a [1 0 1] orientation in the film growth direction while the 190-nm thick network film grows with a random crystallographic orientation. A temperature dependence of the resistance within 160–300 K reveals that the network films exhibit a semiconducting behavior and their carrier transport mechanism is thermally activated band conduction. Room temperature photoluminescence spectra for wavelengths between 300 nm and 700 nm reveal a violet emission centered at 405 nm for the 60-nm thick network film and a blue emission centered at 470 nm for both the 160-nm and the 190-nm thick network films. Annealing decreases the resistivity of the network film.  相似文献   

7.
Capacitor-like Au/BiFeO3/SrRuO3 thin film with (1 1 1) orientation was grown on the SrTiO3 (1 1 1) substrate by radio frequency magnetic sputtering. It shows a resistive switching behavior, where a stable hysteresis in current–voltage curve was well developed by applying an optimum voltage at room temperature, and it reached the saturation at a bias voltage of 8 V. The Child's law in Vmax → 0 direction and the interface-limited Fowler–Nordheim tunneling in 0 → Vmax direction, together with the polarization reversal in the BiFeO3 barrier, are shown to involve in the observed resistive hysteresis.  相似文献   

8.
BaxSr1−xTiO3 (BST) films are fabricated by sol-gel and RF (radio frequency) magnetron sputtering method. A buffer layer with columnar grains by sol-gel method is introduced to improve the dielectric anomaly in BST films. We find that the presence of buffer layer can increase the differential dielectric constant against temperature in sol-gel derived BST films while not so with sputtered films. We explain this by an ‘expanded layer thickness model’ and an unstable crystallized surface, respectively. The obtained (dε/ε) dT is up to 6% around 11 °C by the sol-gel method.  相似文献   

9.
Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 °C using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 °C to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 °C. Films with highest perovskite content were found to form at 820-840 °C on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 °C. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan δ) of 0.035 at a frequency of 1 kHz at room temperature.  相似文献   

10.
The hydrophilic and photocatalytic properties of the SiO2/TiO2 double layers composed of a 20-nm-thick porous SiO2 layer on the 200-nm-thick columnar anatase TiO2 layer were studied. The hydrophilicity of the double layers was strictly determined by the relative coverage of organic contaminants. The intrinsic hydrophilicity of 0° of SiO2 in terms of the water contact angle was restored by the photocatalytic decomposition of organic contaminants under the UV light irradiation.Electron spin resonance measurements revealed the generation of OH radicals under the UV light irradiation onto the SiO2/TiO2 double layers. Photoconductivity measurements showed that the current decay in O2 gas atmosphere was remarkably fast in comparison with that in H2O vapor. These observations support our view that the generation of OH radicals effective for decomposing organic contaminants on the surface begins with the reaction between O2 molecules and the photoexcited electrons. We propose together with other experimental facts herein that OH radicals would be generated via O2 and H2O2 in the double layer system.  相似文献   

11.
Nanostructured (Pb1 − xSrx)TiO3 (PST) (x = 0.1, 0.2 and 0.3) thin films have been prepared by chemical solution deposition process using spin coating technique. The solution as such was deposited on Pt/Ti/SiO2/Si substrates and annealed at 650 °C/3h. Nanograins dependent dielectric properties of PST films show dielectric constant up to the higher frequency region, low losses, large tunability and phase transition at small temperature. The impedance data has been fitted by Cole-Cole model to study the effect of grain boundaries on the dielectric properties. The current-voltage characteristics have been measured to study leakage current in PST films and described by Poole-Frenkel emission model. It is suggested that the key carrier transport process in PST films is emission of electrons from a trap state near the metal-film interface into a continuum of states associated with each conductive dislocation. The activation energy value for carrier transport in PST films is obtained from temperature-dependent current-voltage characteristics.  相似文献   

12.
In the present investigation (Pb0.5Ba0.5)ZrO3 (PBZ) thin films doped by K (KPBZ) from 0 to 5 mol% were successfully deposited on Pt-buffered silicon substrates by a sol-gel method. The K content dependence of microstructure and electrical properties of KPBZ thin films were studied in detail. It was found that, although all the films displayed a pure perovskite structure without obvious difference, the surface roughness of KPBZ films was decreased with increasing K content. Dielectric measurements showed that the figure of merit (FOM) values of KPBZ thin films were greatly increased by K-doping, and at the same time that the temperature-dependent stability was also improved. Thus, K doping is a promising way to optimize the overall electrical properties of PBZ thin films for potential application in tunable devices.  相似文献   

13.
The improvement in the phase change characteristics of Ge2Sb2Te5 (GST) films for phase change random access memory (PCM) applications was investigated by doping the GST films with PbZr0.30Ti0.70O3 (PZT) using cosputtering at room temperature. The doped films showed a retarded crystallization to a higher temperature and higher resistivity in the crystalline state compared to pure GST films. Phase separation has been observed in annealed GST-PZT films and the segregated domains exhibited relatively uniform size. The reduced reset voltage of GST-PZT based cell was due to the reduced programming volume by incorporating PZT into GST. This work clearly reveals the highly promising potential of GST-PZT composite films for application in PCM.  相似文献   

14.
W.T. Tang  Z.G. Hu  J. Sun  J.D. Wu 《Thin solid films》2010,518(19):5442-5446
A plasma assisted reactive pulsed laser deposition process was demonstrated for low-temperature deposition of thin hafnia (HfO2) and zirconia (ZrO2) films from metallic hafnium or zirconium with assistance of an oxygen plasma generated by electron cyclotron resonance microwave discharge. The structure and the interface of the deposited films on silicon were characterized by means of Fourier transform infrared spectroscopy, which reveals the monoclinic phases of HfO2 and ZrO2 in the films with no interfacial SiOx layer between the oxide film and the Si substrate. The optical properties of the deposited films were investigated by measuring the refractive indexes and extinction coefficients with the aid of spectroscopic ellipsometry technique. The films deposited on fused silica plates show excellent transparency from the ultraviolet to near infrared with sharp ultraviolet absorption edges corresponding to direct band gap.  相似文献   

15.
In this work, indium zinc oxide (IZO) films have been deposited on a polyethylene terephthalate substrate coated with an SiOx film. Based on a comparative investigation of an IZO monolayer and an IZO/SiOx multilayer, it is shown that oxygen has a great effect on the electrical properties of the thin films. A mechanism is described to explain the influence of the introduced SiOx buffer layer. It is considered that an interfacial layer has come into being at the interface between the SiOx layer and IZO layer, and the properties of this layer have been evaluated. Moreover, the electrical properties of the IZO/SiOx multilayer have been successfully improved by controlling the oxygen content of the interfacial layer.  相似文献   

16.
Sb2Te3-Ta2O5 nano-composite films were deposited by the cosputtering of Sb2Te3 and Ta2O5 targets using radio frequency magnetron sputtering system at room temperature. A phase-change random access memory (PCRAM) device based on the Sb2Te3-Ta2O5 films was successfully fabricated. Compared to a pure Ge2Sb2Te5 based PCRAM cell, the reset voltage of the Sb2Te3-Ta2O5 based cell was obviously reduced, which was attributed to the reduced thermal conductivity and lower melting point of the Sb2Te3-Ta2O5 films. In addition, the device with the Sb2Te3-Ta2O5 layer could work with much shorter pulse widths for both SET and RESET, suggesting that the Sb2Te3-Ta2O5 based compounds are promising candidates for low-power and fast-speed PCRAM application.  相似文献   

17.
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C.  相似文献   

18.
A combined in-situ investigation using X-ray diffraction and differential scanning calorimetry during annealing was carried out to investigate the formation of intermetallic compounds in the stacked elemental layers and to reveal its influences on the crystallization of kesterite Cu2ZnSnSe4. The Mo/Cu/Zn, Mo/Cu/Sn/Zn, Mo/Cu/Zn/Se and Mo/Cu/Sn/Zn/Se stacked films were prepared with a composition resembling a typical kesterite Cu-poor and Zn-rich metallic composition. In-situ experiments during annealing of pure metallic stacked films reveal a dynamic intermetallic compounds formation of Cu5Zn8 → CuZn → Cu2Zn → Cu3Zn and Cu6Sn5 → Cu41Sn11. The CuZn and Cu5Zn8 layer formed at the interface of metals/Se may prevent the stacked metallic layers from selenization below 320 °C. On the other side, the dynamic formation of Cu–Zn phases in the stacked films is found to be an origin of a ZnSe gradual formation starting from 320 °C. Phase analysis suggests that the ternary Cu2SnSe3 phase forms almost immediately after the formation of Cu2Se and SnSe. The formation of Cu2SnSe3 is indicated by the consumption of SnSe by the Cu2Se which occurs at 530–540 °C. Crystallization of kesterite takes place above 540 °C. On a phenomenological basis of present results, consequences for the thin film kesterite fabrication for solar cell application are discussed.  相似文献   

19.
O. Morán  R. Hott 《Thin solid films》2009,517(6):1908-1916
High-quality, c-axis oriented YBa2Cu3O7 − x/SrTiO3/Au (YBCO/STO/Au) planar structures were fabricated in situ by direct current/radiofrequency inverted-cylinder magnetron sputtering on (001) STO oriented substrates. The sandwich-type structures were patterned to transistor dimensions by standard ultraviolet-photolithography and Ar etching. The current transport mechanism in the very thin STO barriers (2-30 nm) was examined by measuring the tunneling G as function of temperature (T), and bias voltage (V). It was found that resonant tunneling and hopping via a small number of localized states (LS) are responsible for electronic conduction in the insulating material. Elastic tunneling was observed for the case of a nominal 2 nm thick STO-barrier with an energy gap Δ ≈ 20 meV in the (001) direction of YBCO. On the other hand, inelastic hopping transport via n-LS dominated for STO barrier thickness d > 2 nm. G of the lowest-order hopping channel (hopping via two LS) exhibits the characteristic T and V dependences: G2hop(T) ∝ T4/3, G2hop(V) ∝ V4/3, respectively. Increasing the thickness of the STO barriers, hopping channels of higher order contribute more and more to the current transport as proven by measuring the T and V dependences. A crossover to variable range hopping behavior has been observed for junctions with thicker barriers (d ≥ 20 nm) in the high-V or high-T regime. By fitting the experimental data to theoretical models, physical parameters of the LS could be determined. For instance, the value of the localization length or radius of the localized state was determined to be ~ 4.6 × 10− 8 cm which corresponds to the lattice constant of the STO unit cell. A value of ~ 6 × 1019 (eV)− 1 cm− 3 was calculated for the density of LS and the average barrier height was estimated as ~ 0.4 eV.  相似文献   

20.
Metal-insulator-semiconductor capacitors were fabricated with sputtered ZnO and atomic layer deposited HfO2 as the semiconductor and gate dielectric layers, respectively. From the capacitance-voltage measurements, it was confirmed that pre-deposition annealing of the sputtered ZnO layer at 300 °C in air greatly decreased the interfacial trap density (∼ 2 × 1012 cm− 2 eV− 1). X-ray photoelectron spectroscopy showed a decrease in the OH bonds adsorbed on the ZnO surface after pre-deposition annealing, which improved the interface property. A very small capacitance equivalent thickness of 1.3 nm was achieved, which decreased the operation voltage (< 5 V) of the device significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号