首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the characteristics of highly transparent conductive Ga-doped ZnO (GZO) polycrystalline films of 100 nm thickness deposited on glass and polymer substrates. GZO films were deposited by ion plating with dc-arc discharge. We developed multiple-deposition method to obtain various deposition process temperatures lower than 100 °C. Cross-sectional SEM images show that all the GZO films have columnar structure. Analysis of data obtained by XRD measurements shows that all the GZO films with wurtzite structure exhibit highly (002) orientation perpendicular to the substrate. The resistivity of the GZO films deposited on polyester and glass substrates were 5.0 × 10-4 Ω · cm. The mechanical bending properties of the GZO films were investigated by comparing the sheet resistance determined before and after a bending test with various bending diameters. For the bending diameter of more than 30 mm, all the GZO films exhibited excellent bending properties with no change in sheet resistance. For the bending diameter of less than 20 mm, we found the sheet resistance affected by the bending. We demonstrated that our multiple-deposition method to achieve different controllable polyester substrate temperatures is highly suitable for improving the bending properties of GZO films.  相似文献   

2.
The structural, electrical and moisture resistance properties of Ga-doped ZnO (GZO) films with 200 nm thickness in terms of their dependence on oxygen gas flow rate (fO2) during deposition were studied. GZO films are deposited on glass substrates by ion plating with DC arc discharge. After a reliability test at a temperature of 60 °C and a relative humidity of 95% for 500 h, the percentage of resistivity change of GZO films decreased from 16–20% to 3–11% with increasing fO2 from 6–12 to 14–25 sccm. The minimum percentage of the resistivity change was observed in the GZO films deposited at fO2 of 21 sccm and the resistivity after the reliability test was 3.5 × 10− 4 Ω cm. The effects of the intrinsic defects on the percentage of resistivity change are discussed on the basis of electrical and optical characteristics of GZO films.  相似文献   

3.
Influence of thermal annealing on electrical properties of GZO films has been studied by means of Hall effect measurements and optical characterization based on Drude model analysis for transmission and reflection spectra. Electrical resistivity increased with increasing annealing temperature. Changes of electrical properties were compared between air and N2 gas atmosphere. Thermal stability in the air was worse compared to the N2 gas atmosphere. Annealing at rather high temperature caused decrease in the Hall mobility and increase in optical mobility. The difference between the Hall mobility and the optical mobility was attributed to carrier scattering at grain boundaries. Three kinds of deposition method, ion plating using DC arc discharge, DC magnetron sputtering, and RF power superimposed DC magnetron sputtering were compared in terms of the thermal stability.  相似文献   

4.
Highly transparent conductive Ga-doped ZnO (GZO) thin films have been prepared on glass substrates by metal organic chemical vapor deposition. The effect of Ga doping on the structural, electrical and optical properties of GZO films has been systematically investigated. Under the optimum Ga doping concentration (∼4.9 at.%), c-axis textured GZO film with the lowest resistivity of 3.6 × 10−4 Ω cm and high visible transmittance of 90% has been achieved. The film also exhibits low transmittance (<1% at 2500 nm) and high reflectance (>70% at 2500 nm) to the infrared radiation. Furthermore, our developed GZO thin film can well retain the highly transparent conductive performance in oxidation ambient at elevated temperature (up to 500 °C).  相似文献   

5.
Transparent thin films of Ga-doped ZnO (GZO), with Ga dopant levels that varied from 0 to 7 at.%, were deposited onto alkali-free glass substrates by a sol-gel process. Each spin-coated film was preheated at 300 °C for 10 min, and then annealed at 500 °C for 1 h under air ambiance. The effects of Ga dopant concentrations on crystallinity levels, microstructures, optical properties, and electrical resistivities of these ZnO thin films were systematically investigated. Photoluminescence spectra of GZO thin films were examined at room temperature. XRD results revealed that the undoped ZnO thin films exhibited a preferred orientation along the (002) plane and that the ZnO thin films doped with Ga showed degraded crystallinity. Experimental results also showed that Ga doping of ZnO thin films could markedly decrease surface roughness, improve transparency in the visible range, and produce finer microstructures than those of undoped ZnO thin films. The most promising films for transparent thin film transistor (TTFT) application produced in this study, were the 3 and 5 at.% Ga-doped ZnO thin films, both of which exhibited an average transmittance of 90.6% and an RMS roughness value of about 2.0 nm.  相似文献   

6.
This study examined the anode material properties of Ga-doped zinc oxide (GZO) thin films deposited by pulsed DC magnetron sputtering along with the device performance of organic light emitting diodes (OLEDs) using GZO as the anode. The structure and electrical properties of the deposited films were examined as a function of the substrate temperature. The electrical properties of the GZO film deposited at 200 °C showed the best properties, such as a low resistivity, high mobility and high work function of 5.3 × 10− 4Ω cm, 9.9 cm2/Vs and 4.37 eV, respectively. The OLED characteristics with the GZO film deposited under the optimum conditions showed good brightness > 10,000 cd/m2. These results suggest that GZO films can be used as the anode in OLEDs, and a lower deposition temperature of 200 °C is suitable for flexible devices.  相似文献   

7.
Al-doped ZnO (AZO) films were deposited on glass by hollow cathode gas flow sputtering using Zn-Al alloy targets. Sputtering power for all the depositions was fixed at 1500 W. Resistivities of 0.81-1.1 × 10− 3 Ω cm were obtained for AZO films deposited at room temperature with an O2 flow from 38 to 50 standard cubic centimetre/minute (SCCM), while static deposition rates were almost constant at 270-300 nm/min. On the other hand, lower resistivities of 5.2-6.4 × 10− 4 Ω cm were obtained for AZO films deposited at 200 °C with an O2 flow from 25 to 50 SCCM, while the static deposition rates were almost constant at 200-220 nm/min. Average transmittances in the visible light region were above 80% for both sets of films.  相似文献   

8.
J. Wienke  A.S. Booij 《Thin solid films》2008,516(14):4508-4512
Indium-doped zinc oxide (ZnO:In) was spray-deposited on glass at a substrate temperature of 370 °C. The spray was generated by means of an ultrasonic nebulizer and using air as carrier gas. To the 0.2 mol/l zinc acetate solution indium acetate has been added as dopant, the [In]/[Zn] ratio was changed between 1 and 5 at.%. The mobility and resistivity have an optimum at an [In]/[Zn] ratio of 3 at.% with values of 2.9 mΩ cm and 12.5 cm2/Vs at a layer thickness of 1.3 μm. The application of a nucleation layer of 100 nm intrinsic ZnO (i-ZnO) on the glass substrate and the subsequent deposition of ZnO:In lead to a layer with significant improvement of the optical properties; the ultraviolet to visible (UV-VIS) light transmittance increased to above 80% in the visible light region. The new layer configuration caused a change in the layer morphology, which is visualised by Scanning Electron Microscope photographs, Energy Dispersive X-ray and X-ray Diffraction measurements. The electrical properties remained unchanged.  相似文献   

9.
Akihiko Kono 《Vacuum》2009,84(5):625-628
A hot-cathode plasma sputtering technique was used for fabricating the highly transparent and conducting aluminum-doped zinc oxide (AZO) films on glass substrates from a disk-shaped AZO (Al2O3: 2 wt.%) target. Under particular conditions where the target voltage was VT = −200 V and the plasma excitation pressure was PS = 1.5 × 10−3 Torr, the lowest resistivity of 4.2 × 10−4 Ω cm was obtained at 400 nm, and this was associated with a carrier density of 8.7 × 1020 cm−3 and a Hall mobility of 17 cm2/V s. From the annealing experiment of the AZO films in the oxygen and nitrogen gases of the atmospheric pressure it was revealed that both the oxygen vacancies and the grain boundaries in the polycrystalline AZO film played an important role in the electrical properties of the film.  相似文献   

10.
For the purpose of using transparent conducting impurity-doped ZnO thin films in liquid crystal display (LCD) applications, the relationship between the properties of dc magnetron sputtering (dc-MS) deposited thin films and the properties of the oxide targets used to produce them is investigated. Both Al-doped and Ga-doped ZnO (AZO and GZO) thin films were deposited on glass substrates using a dc-MS apparatus with various high-density sintered AZO or GZO disk targets (diameter of about 150 mm); the target and substrate were both fixed during the depositions. Using targets with a lower resistivity results in attaining more highly stable dc-MS depositions with higher deposition rates and lower arcing. In addition, dc-MS depositions using targets with a lower resistivity produced improvements in resistivity distribution on the substrate surface. It was found that the oxygen content in deposited thin films decreased as the oxygen content of the target used in the deposition was decreased. As a result, the dc-MS deposition of transparent conducting impurity-doped ZnO thin films suitable for LCD applications requires the preparation of significantly reduced AZO and GZO targets with low oxygen content.  相似文献   

11.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

12.
The effect of annealing on structural, electrical, and optical properties of Ga-doped ZnO (GZO) films prepared by RF magnetron sputtering was investigated in air and nitrogen. GZO films are polycrystalline with a preferred 002 orientation. The resistivities of annealed films are larger than the as-deposited. The transmittance in the near IR region increases greatly and the optical band gap decreases after annealing. The photoluminescence spectra is composed of a near band edge emission and several deep level emissions (DLE) which are dominated by a blue emission. After annealing, these DLEs are enhanced evidently.  相似文献   

13.
Current research on transparent conductive oxides (TCOs) is focusing on indium-free TCOs, such as Al-doped ZnO (AZO), as an alternative to indium-tin oxide. In this work, AZO thin films were grown by Pulsed Laser Deposition at room temperature in oxygen atmosphere. The O2 pressure was varied from 0.01 Pa to 10 Pa, highlighting the effects of defect formation and oxygen vacancies on the film properties. Structural properties were characterized by X-ray diffraction and Scanning Electron Microscopy, while functional properties were characterized by measurement of electrical conductivity, Hall mobility, carrier density and optical transmission. At an optimal deposition pressure of 2 Pa, optical transparency in the visible range and minimum resistivity (4.5 ? 10− 4 Ω cm) were found, comparable to state-of-the-art TCOs. Mean value of visible transparency was shown to increase with increasing pressure, up to 88% at a deposition pressure of 10 Pa.  相似文献   

14.
Effect of substrate temperature on the properties of Ga-doped ZnO (GZO) films was investigated by pulsed DC magnetron sputtering with a rotating cylindrical target with an aim to establish suitable process conditions for their photovoltaic (PV) cell applications. Without formation of undesirable secondary oxide phases such as Ga2O3 and ZnGa2O4, the GZO film having mixed orientation at lower deposition temperature evolved into the c-axis oriented one with increasing deposition temperature to 230 °C, which accompanied morphological evolution to vertically oriented dense columnar structure and improved doping efficiency. Correlated with this, crater-like surface texturing was possible only on the sample deposited at 230 °C. Electrical resistivity and diffuse surface reflectance over the spectral range of 200-1200 nm of this GZO film after surface texturing were 8.73 × 10−4 Ω cm and 3.32%, respectively, indicating that the film has application potential as anti-reflection coating and front electrode of PV cells. Morphological features, surface texturing behavior, electrical and optical properties of the GZO films in this study suggest that this novel technique would be applicable to the fabrication of anti-reflection coating and front electrode of PV cells only when substrate temperature is sufficiently high.  相似文献   

15.
The effect of thermal annealing on the electrical properties of highly transparent conductive Ga-doped ZnO (GZO) films deposited on glass substrates at 200 °C by an ion-plating deposition was investigated. GZO films were annealed in the temperature range from 200 to 600 °C for 30 min under the atmospheric pressure of high-purity N2 gas. Up to 300 °C, GZO films were electrically very stable, and there was little change in resistivity. When the annealing temperature exceeded 400 °C, resistivity increased rapidly, originating from an abrupt decrease in carrier concentration. It was suggested to be due to both desorption of Zn from GZO films and grain boundary segregation of Ga dopants.  相似文献   

16.
Aluminum doped ZnO thin films (ZnO:Al) were deposited on glass and poly carbonate (PC) substrate by r.f. magnetron sputtering. In addition, the electrical, optical properties of the films prepared at various sputtering powers were investigated. The XRD measurements revealed that all of the obtained films were polycrystalline with the hexagonal structure and had a preferred orientation with the c-axis perpendicular to the substrate. The ZnO:Al films were increasingly dark gray colored as the sputter power increased, resulting in the loss of transmittance. High quality films with the resistivity as low as 9.7 × 10− 4 Ω-cm and transmittance over 90% have been obtained by suitably controlling the r.f. power.  相似文献   

17.
In this article, preparation of Ga-doped zinc oxide (GZO) nanoparticles by a polymer pyrolysis method is reported. The pyrolysis behaviors of the polymer precursors prepared via the in situ polymerization of metal salts and acrylic acid are analyzed using thermalgravity-differential scanning calorimetry (TG-DSC) techniques. Then, the structural characteristics of the products are studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is revealed by the results that the GZO nanoparticles calcined at 600 °C show good crystallinity with the wurtzite structure. GZO nanoparticles doped with 4 mol% Ga have a mean particle size of 26 nm with spherical-like morphology. Electrical resistivity measurement shows that, before and after high temperature annealing under H2 atmosphere, the resistivity of the GZO nanoparticles is decreased by one and four orders in magnitude, respectively, compared with the pure ZnO nanoparticles. In addition, due to its versatility, this in situ polymer pyrolysis method can be easily extended to synthesis of other n-type doped semiconductor, such as In and Al doped ZnO or Sb doped SnO2.  相似文献   

18.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

19.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

20.
The relationship between two techniques developed for improving the resistivity distribution on the substrate surface in transparent conducting Al-doped ZnO (AZO) thin films prepared at a temperature of 200 °C by dc magnetron sputtering depositions (dc-MSD) using various sintered AZO targets has been investigated. One improvement method superimposes an rf component onto the dc-MSD (rf + dc-MSD). The other improvement method uses conventional dc-MSD with a low resistivity AZO target prepared under optimized conditions. An improvement of resistivity distribution resulted from a decrease in the resistivity of targets used in the preparation of AZO thin films by dc-MSD either with or without superimposing rf power. However, the resistivity distribution of AZO thin films resulting from depositions using rf-superimposed dc-MSD with lower-resistivity targets was not significantly improved over that of AZO thin films prepared by conventional dc-MSD using targets with the same low resistivities. The use of rf superimposition only resulted in improved resistivity distribution in thin films when the AZO targets had a resistivity higher than around 1 × 10− 3 Ω cm. It should be noted that sintered AZO targets optimized for the preparation of AZO thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a lower resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号