首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO thin films were deposited on glass substrates by direct current (DC) sputtering technique at room temperature (RT) to 400 °C with a 99.999% pure ZnO target. Then the samples deposited at RT were annealed in air from the RT to 400 °C. The effects of substrate temperature (Ts) and annealing treatment (Ta) on the crystallization behavior and the morphology have been studied by X-ray diffraction and atomic force microscopy. We also compared the structural properties of samples deposited at 400 °C on glass to those deposited on Pt/silicon substrate. The resistivity, surface roughness and size of the grains have also been studied and correlated to the thickness of ZnO films deposited on Pt/Si substrates. The experimental results reveal that the substrate has a major influence on the structural and morphological properties. For the films deposited on glass, below 400 °C, Ts and Ta have a similar influence on the structure of the films. Moreover, the ZnO samples deposited at RT and annealed in air have poor electrical properties.  相似文献   

2.
High-Tc screen-printed Ho-Ba-Cu-O films were prepared on YSZ substrates by a melt processing method. The films were fired at Ts = 1000-1050 °C for 5 min and cooled to 450 °C by two steps in flowing O2. The maximum critical current density Jc (77 K, 0 T) of 2.0 × 103 A cm− 2 was only attained under much limited firing conditions; Ts = 1020 °C and cooled to 800 °C at a cooling rate of 400 °C h− 1.  相似文献   

3.
Nitrogen-doped ZnO films were deposited by RF magnetron sputtering in 75% of N2 / (Ar + N2) gas atmosphere. The influence of substrate temperature ranging from room temperature (RT) to 300 °C was analyzed by X-ray diffractometry (XRD), spectrophotometry, X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS) and Hall measurements setup. The XRD studies confirmed the hexagonal ZnO structure and showed that the crystallinity of these films increased with increasing substrate temperature (Ts). The optical studies indicate the average visible transmittance in the wavelength ranging 500-800 nm increases with increasing Ts. A minimum transmittance (9.84%) obtained for the films deposited at RT increased with increasing Ts to a maximum of 88.59% at 300 °C (500-800 nm). Furthermore, it was understood that the band gap widens with increasing Ts from 1.99 eV (RT) to 3.30 eV (250 °C). Compositional analyses (XPS and SIMS) confirmed the nitrogen (N) incorporation into the ZnO films and its decreasing concentration with increasing Ts. The negative sign of Hall coefficients confirmed the n-type conducting.  相似文献   

4.
TiAlN films were deposited on silicon (1 1 1) substrates from a TiAl target using a reactive DC magnetron sputtering process in Ar+N2 plasma. Films were prepared at various nitrogen flow rates and TiAl target compositions. Similarly, CrN films were prepared from the reactive sputtering of Cr target. Subsequently, nanolayered TiAlN/CrN multilayer films were deposited at various modulation wavelengths (Λ). X-ray diffraction (XRD), energy dispersive X-ray analysis, nanoindentation and atomic force microscopy were used to characterize the films. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of TiAlN/CrN multilayers was 3900 kg/mm2, whereas TiAlN and CrN films exhibited maximum hardnesses of 3850 and 1000 kg/mm2, respectively. Thermal stability of TiAlN and TiAlN/CrN multilayer films was studied by heating the films in air in the temperature range (TA) of 500-900 °C for 30 min. The XRD spectra revealed that TiAlN/CrN multilayers were stable up to 800 °C and got oxidized substantially at 900 °C. On the other hand, the TiAlN films were stable up to 700 °C and got completely oxidized at 800 °C. Nanoindentation measurements performed on the films after heat treatment showed that TiAlN retained a hardness of 2200 kg/mm2 at TA=700 °C and TiAlN/CrN multilayers retained hardness as high as 2600 kg/mm2 upon annealing at 800° C.  相似文献   

5.
Stoichiometric compound of copper indium diselenide (CuInSe2) was synthesized by direct reaction of high-purity elemental copper, indium and selenium in an evacuated quartz ampoule. The phase structure and composition of the synthesized pulverized material analyzed by X-ray diffraction (XRD) and energy dispersive analysis of X-rays (EDAX) revealed the chalcopyrite structure and stoichiometry of elements. Thin films of CuInSe2 were deposited onto organically cleaned soda lime glass substrates held at different temperatures (i.e. 300 K to 573 K) using thermal evaporation technique. CuInSe2 thin films were then thermally annealed in a vacuum chamber at 573 K at a base pressure of 10− 2 mbar for 1 h. The effect of substrate temperature (Ts) and thermal annealing (Ta) on structural, compositional, morphological, optical and electrical properties of films were investigated using XRD, transmission electron microscopy, EDAX, atomic force microscopy (AFM), optical transmission measurements and Hall effect techniques. XRD and EDAX studies of CuInSe2 thin films revealed that the films deposited in the substrate temperature range of 423-573 K have preferred orientation of grains along the (112) plane and near stoichiometric composition. AFM analysis indicates that the grain size increases with increase of Ts and Ta. Optical and electrical characterizations of films suggest that CuInSe2 thin films have high absorption coefficient (104 cm− 1) and resistivity value in the interval 10− 2-101 Ω cm influenced by Ts and Ta.  相似文献   

6.
Silicon nitride thin films for use as passivation layers in solar cells and organic electronics or as gate dielectrics in thin-film transistors were deposited by the Hot-wire chemical vapor deposition technique at a high deposition rate (1-3 ?/s) and at low substrate temperature. Films were deposited using NH3/SiH4 flow rate ratios between 1 and 70 and substrate temperatures of 100 °C and 250 °C. For NH3/SiH4 ratios between 40 and 70, highly transparent (T ~ 90%), dense films (2.56-2.74 g/cm3) with good dielectric properties and refractive index between 1.93 and 2.08 were deposited on glass substrates. Etch rates in BHF of 2.7 ?/s and < 0.5 ?/s were obtained for films deposited at 100 °C and 250 °C, respectively. Films deposited at both substrate temperatures showed electrical conductivity ~ 10− 14 Ω− 1 cm− 1 and breakdown fields > 10 MV cm− 1.  相似文献   

7.
T.H. Sajeesh 《Thin solid films》2010,518(15):4370-4374
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (> 105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined.  相似文献   

8.
A. Celik  E. Bacaksiz 《Thin solid films》2009,517(9):2851-1374
Nickel diffusion in CuInSe2 thin films was studied in the temperature range 430-520 °C. Thin films of copper indium diselenide (CuInSe2) were prepared by selenization of CuInSe2-Cu-In multilayered structure on glass substrate. A thin film of Nickel was deposited and annealed at different temperatures. Surface morphologies of the Ni diffused and undiffused CuInSe2 films were investigated using scanning electron microscope. The alteration of Nickel concentration in the CuInSe2 thin film was measured by Energy Dispersive X-Ray Fluorescence (EDXRF) technique. These measurements were fitted to a complementary error function solution and the diffusion coefficients at four different temperatures were evaluated. The diffusion coefficients of Ni in CuInSe2 films were estimated from concentration profiles at temperatures 430-520 °C as D = 1.86 × 10− 7(cm2s− 1)exp[− 0.68(eV)/kT].  相似文献   

9.
S.J. Lim 《Thin solid films》2008,516(7):1523-1528
Recently, the application of ZnO thin films as an active channel layer of transparent thin film transistor (TFT) has become of great interest. In this study, we deposited ZnO thin films by atomic layer deposition (ALD) from diethyl Zn (DEZ) as a metal precursor and water as a reactant at growth temperatures between 100 and 250 °C. At typical growth conditions, pure ZnO thin films were obtained without any detectable carbon contamination. For comparison of key film properties including microstructure and chemical and electrical properties, ZnO films were also prepared by rf sputtering at room temperature. The microstructure analyses by X-ray diffraction have shown that both of the ALD and sputtered ZnO thin films have (002) preferred orientation. At low growth temperature Ts ≤ 125 °C, ALD ZnO films have high resistivity (> 10 Ω cm) with small mobility (< 3 cm2/V s), while the ones prepared at higher temperature have lower resistivity (< 0.02 Ω cm) with higher mobility (> 15 cm2/V s). Meanwhile, sputtered ZnO films have much higher resistivity than ALD ZnO at most of the growth conditions studied. Based upon the experimental results, the electrical properties of ZnO thin films depending on the growth conditions for application as an active channel layer of TFT were discussed focusing on the comparisons between ALD and sputtering.  相似文献   

10.
Influences of the temperature (Ts) for spray pyrolysis deposition of TiO2 blocking layer (BL) using titanium diisopropoxide bis(acetylacetonate) (TAA) as a precursor and the temperature (Tp) for post-annealing of the BL films on the resulting BL film morphology and photovoltaic performance of solid-state dye-sensitized solar cells (SDSC) are investigated. A Ts ranging from 300 to 400 °C is found preferable for the formation of BL films with smooth surface and dense grain packing. A Ts lower than 300 °C results in insufficient decomposition of the TAA precursor and is unable to form smooth BL films, while a Ts over 400 °C leads to loosely packed grain in BL films. Power conversion efficiency (PCE) of ~ 4.0% is obtained for SDSC devices with BL films prepared at a Ts in the range of 300-450 °C. High temperature post-annealing (Tp = 500-550 °C) of the BL films prepared at a low Ts, such as 300 °C, can improve the PCE up to 4.6%. The improvements are considered due to the higher purity, increased crystallinity, and retained high grain packing density of the post-annealed BL films, which facilitate charge transport and suppress charge recombination.  相似文献   

11.
Yttrium oxide (Y2O3) thin films were grown at substrate temperatures (Ts) ranging from room temperature (RT) to 500 °C and their structural and electrical properties were evaluated. The results indicate that Y2O3 films grown at RT-100 °C were amorphous (a-Y2O3). Y2O3 films began to show cubic phase (c-Y2O3) at Ts = 200 °C. The average grain size varies from 5 to 40 nm as a function of Ts. Room temperature ac electrical conductivity increases from 0.4 (Ω-m)− 1 to 1.2 (Ω-m)− 1 with increasing Ts from RT to 500 °C. The frequency dispersion of the electrical resistivity reveals the hopping conduction mechanism. Frequency dispersion of the electrical resistivity fits to the modified Debye's function, which considers more than one ion contributing to the relaxation process. The mean relaxation time decreases from 2.8 to 1.4 μs with increasing Ts indicating that the effect of microstructure of the Y2O3 films is significant on the electrical properties.  相似文献   

12.
Purabi Gogoi 《Thin solid films》2010,518(23):6818-4510
Hydrogenated silicon films ranging from pure amorphous to biphasic silicon i.e., nanocrystallites embedded amorphous silicon are prepared in an indigenously fabricated hot wire chemical vapor deposition chamber by varying the substrate temperature (Ts) and process pressure (PP). The deposition rates are found to be about 2.5-14 Å/s, which is very much appreciated for the fabrication of cost effective devices. While the films deposited at low Ts are amorphous in nature, those deposited at Ts ≥ 200 °C contain nanocrystallites embedded in the amorphous network. These mixed phase films show high crystalline fraction of 50-56%. All the films deposited at 250 °C, by varying PP, are nanocrystallite embedded with crystalline fraction 60-75%. The optical band gaps of the films (2.0-2.37 eV) are high compared to the regular films, whereas the hydrogen content remains in the reported range of 2.5-5 at.%. We attribute the high optical band gap to the improved order as well as the presence of low density amorphous tissues surrounding the grain boundary regions. The ease of depositing films with tunable band gap is useful for fabrication of tandem solar cells.  相似文献   

13.
H.H. Zhang  Q.Y. Zhang 《Vacuum》2009,83(11):1311-2688
ZrO2 thin films were deposited onto Si wafers and glass slides by reactive rf magnetron sputtering with varying conditions of substrate temperature (Ts). Structural analysis was carried out using high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM). The scaling behavior of the AFM topographical profiles was analyzed using one-dimensional power spectral density method (1DPSD). Morphological and structural evolution of ZrO2 films have been studied in relation to Ts. With substrate temperatures ranging from RT to 550 °C, the structural transition of the films is a-ZrO2 (below 250 °C) → m-ZrO2 with a little a-ZrO2 (450 °C) → m-ZrO2 with a little t-ZrO2 (550 °C). The roughness exponent α is 1.53 ± 0.02, 1.04 ± 0.01, 1.06 ± 0.05, 1.20 ± 0.03 for ZrO2 thin films deposited at RT, 250 °C, 450 °C, and 550 °C, respectively. Quantitative surface characterization by spatially resolved 1DPSD analyses identified three different growth mechanisms of surface morphology for ZrO2 thin films deposited at RT, 250∼450 °C and 550 °C. The evolution and interactions of surface roughness and microstructure are discussed in terms of surface diffusion, grain growth, and flux shadowing mechanisms.  相似文献   

14.
SnS films were prepared onto the ITO-coated glass substrates by pulse-form electro-deposition. The potential applied to the substrates was of pulse-form and its “on” potential, Von was − 0.75 V (vs. SCE )and “off ” potential, Voff was varied in the range of − 0.1-0.5 V. The SnS films deposited at different Voff values were characterized by XRD, EDX, SEM and optical measurements. It shows that all the films are polycrystalline orthorhombic SnS with grain sizes of 21.54-26.93 nm and lattice dimensions of a = 0.4426-0.4431 nm, b = 1.1124-1.1134 nm and c = 0.3970-0.3973 nm, though the Voff has some influence on the surface morphology of the films and Sn/S ratio. When Voff = 0.1-0.3 V, the SnS films have the best uniformity, density and adhesion, and the Sn/S ratio is close to 1/1. The direct band gap of the films was estimated to be between 1.23 and 1.33 eV with standard deviation within ± 0.03 eV, which is close to the theoretical value. The SnS films exhibit p-type or n-type conductivity and their resistivity was measured to be 16.8-43.1 Ω cm.  相似文献   

15.
Yttrium-doped hafnium oxide (YDH) films have been produced by sputter-deposition by varying the growth temperature (Ts) from room-temperature (RT) to 400 °C. The electrical and optical properties of YDH films have been investigated. Structural studies indicate that YDH films grown at Ts = RT − 200 °C were amorphous and those grown at 300-400 °C are nanocrystalline. The crystalline YDH films exhibit the high temperature cubic phase of HfO2. Spectrophotometry analysis indicates that all the YDH films are transparent. The band gap of YDH films was found to be in the range of 6.20-6.28 eV. Frequency variation of frequency dependent resistivity indicates the hopping conduction mechanism operative in YDH films. While the electrical resistivity (ρac) is ~ 1 Ω-m at low frequencies (100 Hz), ρac decreases to ~ 10− 4 Ω-cm at higher frequencies (1 MHz).  相似文献   

16.
A transparent vanadium oxide film has been one of the most studied electrochromic (EC) and Thermochromic (TC) materials. Vanadium oxide films were deposited at different substrate temperatures up to 400 °C and different ratios of the oxygen partial pressure (PO2). SEM, AFM and X-ray diffraction's results show detail structure data of the films. IR mode assignments of the films measured by IR reflection-absorbance in NGIA (near grazing incidence angle) are given. It is found that the film has V2O5 and VO2 combined structures. The films exhibit clear changes in transmittance when the environment temperature (Te) is varied, especially in the 3600-4000 cm− 1 range. Applying a Te that is higher than a critical temperature (Tc) to the samples, the as-RT (room temperature) deposited film with 9% PO2 has a transmittance variation of 30%, but the films that were deposited on a heated substrate of 400 °C have little variation. There is tendency of bigger variation in transmittance for the sample deposited at a larger PO2, when it is applied by 200 °C Te.  相似文献   

17.
Films of gallium-doped zinc oxide (GZO) were deposited on glass substrates by radio-frequency magnetron sputtering using a ceramic target of Ga:ZnO (4 at.% Ga vs. Zn). Both the substrate temperature (Ts) and the target-substrate distance (dts) were varied and the effect on electrical, optical and structural properties of the resulting films were measured. The highest conductivity of 3200 S/cm was obtained at a deposition temperature of 250 °C, at a dts of 51 mm. This sample had the highest carrier concentration in this study, 9.6 × 1020/cm3. Optical transmittance of all films was <90% in the visible range. The grain size of the film grown at dts = 51 mm was smaller than the grain size for films grown with a shorter dts; moreover, the films with dts = 51 mm exhibited the smoothest surface, with a root mean square surface roughness of 2.7 nm. Changes in Ts have a more pronounced effect on conductivity compared to changes in dts; however, variations in structure do not appear to be well-correlated with conductivity for samples in the 2000-3200 S/cm range. These results suggest that incorporation and activation of Ga is of key importance when attempting to obtain GZO films with conductivities greater than 2000 S/cm.  相似文献   

18.
We report the structural and optical properties of nanocrystalline thin films of vanadium oxide prepared via evaporation technique on amorphous glass substrates. The crystallinity of the films was studied using X-ray diffraction and surface morphology of the films was studied using scanning electron microscopy and atomic force microscopy. Deposition temperature was found to have a great impact on the optical and structural properties of these films. The films deposited at room temperature show homogeneous, uniform and smooth texture but were amorphous in nature. These films remain amorphous even after postannealing at 300 °C. On the other hand the films deposited at substrate temperature TS > 200 °C were well textured and c-axis oriented with good crystalline properties. Moreover colour of the films changes from pale yellow to light brown to black corresponding to deposition at room temperature, 300 °C and 500 °C respectively. The investigation revealed that nanocrystalline V2O5 films with preferred 001 orientation and with crystalline size of 17.67 nm can be grown with a layered structure onto amorphous glass substrates at temperature as low as 300 °C. The photograph of V2O5 films deposited at room temperature taken by scanning electron microscopy shows regular dot like features of nm size.  相似文献   

19.
Yttrium oxide (Y2O3) thin films were grown onto Si(1 0 0) substrates using reactive magnetron sputter-deposition at temperatures ranging from room temperature (RT) to 500 °C. The effect of growth temperature (Ts) on the growth behavior, microstructure and optical properties of Y2O3 films was investigated. The structural studies employing reflection high-energy electron diffraction RHEED indicate that the films grown at room temperature (RT) are amorphous while the films grown at Ts = 300-500 °C are nanocrystalline and crystallize in cubic structure. Grain-size (L) increases from ∼15 to 40 nm with increasing Ts. Spectroscopic ellipsometry measurements indicate that the size-effects and ultra-microstructure were significant on the optical constants and their dispersion profiles of Y2O3 films. A significant enhancement in the index of refraction (n) (from 2.03 to 2.25) is observed in well-defined Y2O3 nanocrystalline films compared to that of amorphous Y2O3. The observed changes in the optical constants were explained on the basis of increased packing density and crystallinity of the films with increasing Ts. The spectrophotometry analysis indicates the direct nature of the band gap (Eg) in Y2O3 films. Eg values vary in the range of 5.91-6.15 eV for Y2O3 films grown in the range of RT-500 °C, where the lower Eg values for films grown at lower temperature is attributed to incomplete oxidation and formation of chemical defects. A direct, linear relationship between microstructure and optical parameters found for Y2O3 films suggest that tuning optical properties for desired applications can be achieved by controlling the size and structure at the nanoscale dimensions.  相似文献   

20.
Jhantu K. Saha 《Thin solid films》2007,515(9):4098-4104
The plasma parameter for fast deposition of highly crystallized microcrystalline silicon (μc-Si) films with low defect density is presented using the high-density and low-temperature microwave plasma (MWP) of a SiH4-H2 mixture. A very high deposition rate of ∼ 65 Å/s has been achieved at SiH4 concentration of 67% diluted in H2 with high Raman crystallinity Ic / Iα > 3 and low defect density of 1-2 × 1016 cm− 3 by adjusting the plasma condition. Contrary to the conventional rf plasma, the defect density of the μc-Si films strongly depend on substrate temperature Ts and it increased with increasing Ts despite Ts below 300 °C, suggesting that the real surface temperature at the growing surface was higher than the monitored value. The sufficient supply of deposition precursors such as SiH3 at the growth surface under an appropriate ion bombardment was effective for the fast deposition of highly crystallized μc-Si films as well as the suppression of the incubation and transition layers at the initial growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号