首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary II-VI semiconductors have many excellent physical and chemical properties, and can be used in multiple technical fields. But their previous solid state synthesis methods usually need high reaction temperatures and rigorous conditions (e.g., in vacuum or under the protection of inert gases). In this letter, we report a novel solid state synthesis of hexagonal Cd1 − xZnxS (x = 0-1) nanoparticles in air from a class of solid air-stable single-source molecular precursors (cadmium zinc bis(N,N-diethyldithiocarbamate, Cd1 − xZnx-(DDTC)2) by two facile steps: firstly, Cd1 − xZnx-(DDTC)2 (x = 0-1) were prepared directly through the precipitation reactions of stoichiometric cadmium sulfate, zinc acetate and sodium diethyldithiocarbamate in distilled water under the ambient condition (8 °C, 1 atmospheric pressure); secondly, hexagonal Cd1 − xZnxS (x = 0-1) nanoparticles were produced simply via thermolysis of the single-source precursors in air at 300 °C for 3 h. The proposed method may serve as a kind of simple, mild and cheap way to synthesize nanomaterials of many ternary metal sulfide semiconductors, which have promising applications in the photocatalysis and optoelectronic devices.  相似文献   

2.
Cd(1 − x)ZnxS thin films have been grown on glass substrates by the spray pyrolysis method using CdCl2 (0.05 M), ZnCl2 (0.05 M) and H2NCSNH2 (0.05 M) solutions and a substrate temperature of 260 °C. The energy band gap, which depends on the mole fraction × in the spray solution used for preparing the Cd(1 − x)ZnxS thin films, was determined. The energy band gaps of CdS and ZnS were determined from absorbance measurements in the visible range as 2.445 eV and 3.75 eV, respectively, using Tauc theory. On the other hand, the values calculated using Elliott-Toyozawa theory were 2.486 eV and 3.87 eV, respectively. The exciton binding energies of Cd0.8Zn0.2S and ZnS determined using Elliott-Toyozawa theory were 38 meV and 40 meV, respectively. X-ray diffraction results showed that the Cd(1 − x)ZnxS thin films formed were polycrystalline with hexagonal grain structure. Atomic force microscopy studies showed that the surface roughness of the Cd(1 − x)ZnxS thin films was about 50 nm. Grain sizes of the Cd(1 − x)ZnxS thin films varied between 100 and 760 nm.  相似文献   

3.
The photovoltaic Cd1−xZnxS thin films, fabricated by chemical bath deposition, were successfully used as n-type buffer layer in CuInGaSe2 (CIGS) solar cells. Comprehensive optical properties of the Cd1−xZnxS thin films were measured and modeled by spectroscopic ellipsometry (SE), which is proven to be an excellent and non-destructive technique to determine optical properties of thin films. The optical band gap of Cd1−xZnxS thin films can be tuned from 2.43 eV to 3.25 eV by controlling the Zn content (x) and deposition conditions. The wider-band-gap Cd1−xZnxS film was found to be favorable to improve the quantum efficiency in the wavelength range of 450-550 nm, resulting in an increase of short-circuits current for solar cells. From the characterization of quantum efficiency (QE) and current-voltage curve (J-V) of CIGS cells, the Cd1−xZnxS films (x = 0.32, 0.45) were demonstrated to significantly enhance the photovoltaic performance of CIGS solar cell. The highest efficiency (10.5%) of CIGS solar cell was obtained using a dense and homogenous Cd0.68Zn0.32S thin film as the buffer layer.  相似文献   

4.
Xiaofei Han  Zhude Xu 《Thin solid films》2009,517(19):5653-989
Cd1 − xZnxO nanocrystalline thin films with rock-salt structure were obtained through thermal decomposition of Cd1 − xZnxO2 (x = 0, 0.37, 0.57, 1) thin films which were electrodeposited from aqueous solution at room temperature. X-ray diffraction results showed that the Zn ions were incorporated into rock salt-structure of CdO and the crystal lattice parameters decreased with the increase of Zn contents. The bandgaps of the Cd1 − xZnxO thin films were obtained from optical transmission and were 2.40, 2.51, 2.63 and 3.25 eV, respectively.  相似文献   

5.
Fazhan Wang  Bo Liu 《Materials Letters》2009,63(15):1357-1359
Ternary Zn1 − xCdxO bramble-like nanostructures with a Cd incorporation of about 6.7 at.% were produced onto Au-catalyzed Si substrate by thermal evaporation of Zn and Cd. The X-ray diffraction (XRD) analysis showed that the existence of lattice expansion in the c-axis orientation. The ultra-violet (UV) near-band-edge (NBE) emission of the Zn1 − xCdxO nanobrambles was red-shifted from 369 nm (3.37 eV) to 397 nm (3.13 eV) due to Cd substitution. The oxygen partial pressure was deemed as the critical experimental parameter for the formation of the bramble-like Zn1 − xCdxO nanostructures.  相似文献   

6.
F. Jacob  S. Gall  J. Kessler 《Thin solid films》2007,515(15):6028-6031
The present work studies the influence of the Ga content (x = Ga / (Ga + In)) in the absorber on the solar cell performance for devices using (PVD)In2S3-based buffers. Input to the hypothesis of the relative conduction band positions can be found in the evolution of the device parameters with x. For experiments with x between 0 and 0.5 devices using (PVD)In2S3-based buffers are compared to reference devices using (CBD)CdS. Both buffers give similar cell characteristics for narrow band gap absorbers, typically EgCIGSe < 1.1 eV. However, the parameters of the cells buffered with (PVD)In2S3 are degraded when the absorber gap is widened whereas (CBD)CdS reference devices are only slightly affected. Consequently, the solar cell efficiency is similar for both buffer layers at the lower x values and increases with x only in the case of (CBD)CdS. These evolutions are coherent with the existence of a conduction band cliff at the CIGSe/(PVD)In2S3 interface.  相似文献   

7.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

8.
Zn1−xMgxS (0 ≤ x ≤ 0.55) quantum dots (QDs) were successfully synthesized by precipitation method. The crystal structures, microstructures, and optical properties of the Zn1−xMgxS QDs were investigated using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible and photoluminescence (PL) spectroscopy. The Zn1−xMgxS QDs were found to have a cubic crystal structure and an average crystallite size of 6.40-7.96 nm. It has been shown that an increase in doping Mg2+ concentration in Zn1−xMgxS QDs led to a gradual widening of the band gap and a weakening in the PL intensity of the Zn1−xMgxS QDs.  相似文献   

9.
Cd1−xZnxS nanoparticles were prepared by a one-pot solvothermal process from Zn(CH3COO)2, Cd(CH3COO)2 and NaS2CNEt2·3H2O (sodium diethyldithiocarbamate, DDTC). The Cd1−xZnxS nanoparticles were characterized by X-ray powder diffraction, transmission electron microscope and high-resolution transmission electron microscope equipped with an energy-dispersive X-ray spectrometer. The absorption spectra of the Cd1−xZnxS nanoparticles can be tuned into visible region by modulating stoichiometric ratio between Zn and Cd. With the increase of Zn content, the Cd1−xZnxS nanoparticles showed an enhanced photocatalytic activity on degradation of 4-chlorophenol. The Cd1−xZnxS prepared under the optimal experimental condition (initial Zn/Cd = 3:1, 210 °C, 24 h, in ethanol) possessed the best photocatalytic activity. The conversion ratio could reach up to 84% after 12 h under irradiation of visible light for Cd1−xZnxS prepared in ethanol, which was obviously superior to those of products prepared in water. These results showed that both crystallinity and synthetic medium were responsible for the enhanced photocatalytic activity for 4-chlorophenol.  相似文献   

10.
CuIn1 − xGaxSe2 (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm− 2 to 13 mA cm− 2 depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 °C). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.  相似文献   

11.
Cd1 − xMnxS nanoclusters were synthesized by surfactant-assisted chemical method for different Manganese (Mn) concentration (0.40 ≤ x ≥ 0.10) at 60 °C in argon atmosphere. Incorporation of magnetic ions (Mn) results a decrease in band gap of Cd1 − xMnxS nanoclusters. The room temperature ferromagnetic behaviour is demonstrated first time in Cd0.60Mn0.40S nanoclusters by vibrating sample magneto (VSM) measurements and the origin of magnetization has been discussed.  相似文献   

12.
Transparent conducting thin films of Al-doped and Ga-doped Zn1 − xMgxO with arbitrary Mg content x were deposited on glass substrates by simultaneous RF-magnetron sputtering of doped ZnO and MgO targets, and their fundamental properties were characterized. MgO phase separation in Zn1 − xMgxO films was not detected by X-ray diffraction. The Zn1 − xMgxO films show high optical transparency in the visible region. Although the carrier density of the Zn1  xMgxO films decreased with increasing x, the Zn1 − xMgxO films showed good electrical conductivity; electrical resistivity as low as 8 × 10− 4 Ω ·cm was achieved for the Zn0.9Mg0.1O:Ga thin film.  相似文献   

13.
Zn1 − xMgxO thin films of various Mg compositions were deposited on quartz substrates using inexpensive ultrasonic spray pyrolysis technique. The influence of varying Mg composition and substrate temperature on structural, electrical and optical properties of Zn1 − xMgxO films were systematically investigated. The structural transition from hexagonal to cubic phase has been observed for Mg content greater than 70 mol%. AFM images of the Zn1 − xMgxO films (x = 0.3) deposited at optimized substrate temperature clearly reveals the formation of nanorods of hexagonal Zn1 − xMgxO. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal Zn1 − xMgxO decreases with corresponding increase in Mg content, which result in structure gradually deviating from wurtzite structure. The tuning of the band gap was obtained from 3.58 to 6.16 eV with corresponding increase in Mg content. The photoluminescence results also revealed the shift in ultraviolet peak position towards the higher energy side.  相似文献   

14.
In this paper, a series of Zn1 − xCoxO nanocrystals with different cobalt percentages were fabricated by a simple chemical method, which were intensively explored for spintronics applications. X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectrophotometer, transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) were used to characterize the structures and magnetic properties of prepared samples. It was concluded that Co2+ was well inserted into ZnO wurtzite structure. The ferromagnetism of Zn1 − xCoxO nanopowders was observed at room temperature. The relation between crystallization quality and magnetism of Zn1 − xCoxO nanopowders was discussed in detail. It was demonstrated the crystallization quality of Zn1 − xCoxO nanocrystals had a strong effect on the ferromagnetism.  相似文献   

15.
Polycrystalline Cd3−xyCuxAyTeO6 (A = Li, Na) samples were prepared by solid-state reaction, and their crystal structure and electrical properties were investigated. In Cd3−xCuxTeO6 and Cd3−yAyTeO6 (A = Li, Na), the maxim solubility of x and y was 0.15 and 0.15 for A = Li, 0.05 for A = Na, respectively. For co-substituted samples Cd2.9−yCu0.1LiyTeO6 and Cd2.9−yCu0.1NayTeO6, the maxim solubility of x was the same as single substitution above-mentioned. The alkali-metal substituted samples Cd3−yAyTeO6 (A = Li, Na) showed a negative Seebeck coefficient, which indicates that the major conduction carriers are electron. On the other hand, the co-substituted samples Cd2.9−yCu0.1AyTeO6 (A = Li, Na) represented a positive Seebeck coefficient, and major conduction carriers were hole through substitution by copper ions.  相似文献   

16.
The grain size and the density of the Zn1 − xSnxO (0 ≤ x ≤ 0.05) samples decreased with increasing SnO2 content. The addition of a small amount of SnO2 (x ≤ 0.01) to ZnO led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient, resulting in a significant increase in the power factor. The thermoelectric power factor was maximized to a value of 1.25 × 10−3 Wm−1 K−2 at 1073 K for the Zn0.99Sn0.01O sample.  相似文献   

17.
ZnO and Zn1−xCdxO nanocrystallites were prepared by oxidation of zinc arachidate-arachidic acid and zinc arachidate-cadmium arachidate-arachidic acid LB multilayers, respectively. The metal content of the multilayers was controlled by manipulation of subphase composition and pH. Precursor multilayers were oxidized in the temperature range of 400 °C-700 °C. The formation of ZnO and Zn1−xCdxO was confirmed by UV-Visible spectroscopy. Uniformly distributed, isolated and nearly mono-dispersed nanocrystallites of ZnO (11 ± 3 nm) and Zn1−xCdxO (18 ± 6 nm) were obtained.  相似文献   

18.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

19.
MgxZn1−xO films were deposited onto the glass substrate by a sol-gel spin coating method. The drying and annealing temperatures were 300 and 500 °C in air. As x varies from 0 to 1, it was observed that the crystal structure is changed from wurtzite ZnO to cubic MgO. The morphology characterizations of these films were observed by scanning electron microscope. The randomly oriented hexagonal nanorods were gown on the glass surface when x = 0 and 0.25, which became disappeared with increasing Mg contents. The optical properties of these films were investigated by room-temperature photoluminescence (PL) and UV-vis absorption spectra, which show that the optical band gap and photoluminescence in the visible and UV regions can be ideally tuned by varying the Mg contents in the MgxZn1−xO alloy films.  相似文献   

20.
Y.Y. Xi 《Materials Letters》2008,62(1):128-132
Ternary ZnxCd1 − xS nanowires were synthesized on Au-coated Si (100) substrates by thermal evaporation method. The nanowires obtained under ambient and reduced pressure of ∼ 100 Torr were studied and compared. Both of them were single crystalline wurtzite structured with similar chemical composition. The tip of the nanowires obtained in ambient pressure contained an Au-rich particle, but that obtained under reduced pressure was impurity-free. Hence, both vapor-liquid-solid (VLS) and mixed vapor-solid (VS)-VLS growth mechanisms were proposed for these two types of nanowires. Furthermore, photoluminescence studies revealed that their intrinsic and extrinsic emission bands were within the visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号