首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have made a study of the chemical composition, the electrical, the optical and the structural properties of polycrystalline CuInS2 thin films prepared by spray pyrolysis to be used for thin film solar cells. These films were deposited starting from aqueous solutions with different chemical compositions ([Cu]/[In] and [S]/[Cu] ratios) and at different substrate temperatures. In all cases, the material is p-type with grains preferentially oriented in the (112) direction of the sphalerite structure. The electro-optical properties show a very strong dependence on the [Cu]/[In] ratio in the solution. Films with copper excess have smaller resistivity and better crystallinity than those which are stoichiometric or have indium excess. The results obtained in this work show the possibility of having CuInS2 thin films with a wide range of resistivity, a fact that could be important for making solar cells based on this material.  相似文献   

2.
Copper indium disulphide (CuInS2) is an absorber material for solar cell and photovoltaic applications. By suitably doping CuInS2 thin films with dopants such as Zn, Cd, Na, Bi, Sn, N, P and As its structural, optical, photoluminescence properties and electrical conductivities could be controlled and modified. In this work, Sb (0.01 mole (M)) doped CuInS2 thin films are grown in the temperature range 300-400 °C on heated glass substrates. It is observed that the film growth temperature, the ion ratio (Cu/In = 1.25) and Sb-doping affects the structural, optical and photoluminescence properties of sprayed CuInS2 films.The XRD patterns confirm that the Sb-doping suppresses the growth of CuInS2 polycrystalline thin films along (1 1 2) preferred plane and in other characteristic planes. The EDAX results confirm the presence of Cu, In, S and Sb. About 60% of light transmission occurs in the wavelength range 350-1100 nm. The absorption coefficient (α) is found to be in the order of 105 cm−1. The band gap energy increases as the temperature increases from 300-400 °C (1.35-1.40 eV). SEM photographs depict that large sized crystals of Sb-doped CuInS2 (1 μm) are formed on the surface of the films. Well defined sharp blue and green band emissions are exhibited by Sb-doped CuInS2 thin films. Defects-related photoluminescence emissions are discussed. These Sb-doped CuInS2 thin films are prepared by the cost effective method of spray pyrolysis from the aqueous solutions of CuCl2, InCl3, SC(NH2)2 and SbCl3 on heated glass substrates.  相似文献   

3.
Undoped and chromium doped titanium oxide thin films were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been deposited on heated glass substrates at 373 K. After annealing for 90 min at 723 K, the initially amorphous films became polycrystalline with a predominant anatase structure and average crystallite sizes depending on dopant (Cr) concentration. The repartition of chromium impurities in the matrix of titanium oxide films, analyzed by electron paramagnetic resonance and X-ray photoelectron spectroscopy showed that the entrance of chromium into the anatase structure is mainly achieved by substitution. A decrease in unit cell parameters ratio (c/a) with the increase of chromium content sustains this assertion. The wetting properties of the titanium oxide films were evaluated from contact angle measurements between de-ionized water and films surface during- and post-irradiation with UV light. The correlation between the concentration of the dopant, film structure, surface morphology and wettability characteristics is discussed.  相似文献   

4.
The electrochromic (EC) properties of tungsten oxide (WO3), such as coloration efficiency, cyclic durability and reversibility strongly depend on the structural and morphological properties, which are influenced by the deposition method and parameters.This paper presents the steps for optimizing the deposition parameters (substrate temperature, air flow pressure and precursor solution molarity) for improving the optical and electrical properties of WO3 thin films for EC applications. WO3 thin films were deposited by spray pyrolysis using tungsten hexachloride (WCl6) dissolved in ethanol as precursor solution. The EC properties of optimized films were tested in two different electrolytes (H2SO4 1 M and acetic acid/sodium acetate buffer with pH = 4) and changes in structure, composition and morphology of the films after coloration/bleaching cycles were discussed.The deposition temperature, carrier gas pressure and solution molarity were optimized at 250 °C, 120 kPa and 0.14 M respectively. Under these condition a dense, uniform film, with homogenous distribution of particles, good adhesion to the substrate, low roughness (9.02 nm), high transparency (> 70% in the 500-1100 nm range) and conductivity was obtained. Transmission modulation is higher for the sample cycled in H2SO4 1 M (64% at 630 nm) compared to that cycled in the buffer (21% at 630 nm), whereas opposite results were obtained for coloration efficiencies 28 cm2 C− 1 (at 630 nm) and 35 cm2 C− 1 (at 630 nm), respectively. Changes in surface chemistry and morphology of the optimized sample were observed after cycling in H2SO4.  相似文献   

5.
AgInS2 thin films were prepared by the spray pyrolysis technique using a water/ethanol solution containing silver acetate, indium chloride and thiourea. We reported our results on the characterization of tetragonal AgInS2 (chalcopyrite type) films, which were grown from indium deficient spraying solution. The films displayed a n-type conductivity with room temperature resistivities in the range between 103 and 104 Ω cm. The absorption spectra of sprayed films revealed two direct band-gaps with characteristic energies around 1.87 and 2.01 eV, which are in good agreement with the reported energy values for interband transitions from the split p-like valence band to the s-like conduction band in tetragonal AgInS2 single crystals.  相似文献   

6.
The structural, electrical and optical properties of Na-doped CuInS2 thin films grown by spray pyrolysis were studied. These films crystallized in the sphalerite structure of CuInS2, and showed to contain traces of indium sulfide and CuIn5S8 as impurity phases. All films were In-rich and showed p-type conductivity. The film conductivity was strongly affected by Na-doping, which decreased from 10−2 to 10−5 S/cm by increasing the [Na]/[Cu] ratio from 0.005 to 0.03 in the spray solution. The band gap energy was observed to increase, from 1.4 to 1.45 eV, with increasing the [Na]/[Cu] ratio. Our results suggested that Na could be an effective acceptor impurity in sprayed CuInS2.  相似文献   

7.
N. Kamoun  B. Rezig 《Thin solid films》2007,515(15):5949-5952
We have investigated synthesis conditions and some properties of sprayed Cu2ZnSnS4 (CZTS) thin films in order to determine the best preparation conditions for the realization of CZTS based photovoltaic solar cells. The thin films are made by means of spraying of aqueous solutions containing copper chloride, zinc chloride, tin chloride and thiourea on heated glass substrates at various temperatures. In order to optimize the synthesis conditions of the CZTS films, two series of experiments are performed. In the first series the sprayed duration was fixed at 30 min and in the second it is fixed at 60 min. In each series, the substrate temperature was changed from 553°K to 633°K. The X-ray diffraction shows, on one hand, that the best crystallinity was obtained for 613°K as substrate temperature and 60 min as sprayed duration. On the other hand, these CZTS films exhibit the kesterite structure with preferential orientation along the [112] direction. Atomical Force Microscopy was used to determine the grain sizes and the roughness of these CZTS thin film. After the annealing treatment, we estimated the optical band-gap energy of the CZTS thin film exhibiting the best crystallinity as 1.5 eV which is quite close to the optimum value for a solar cell.  相似文献   

8.
Lanthanum sulfide thin films were prepared on glass substrates from aqueous medium using spray pyrolysis technique. The effect of preparative parameters such as substrate temperature and solution concentration on the films was studied. The lanthanum sulfide films were annealed in air at 300 °C for 2 h. The films were characterized by X-ray diffraction (XRD), optical microscopy, optical absorption, electrical resistivity and thermo-emf measurement techniques. The XRD studies revealed that the as deposited films are amorphous, while annealed films are polycrystalline. The optical band gap of the as deposited film is decreased from 2.5 to 2.2 eV after annealing due to improvement in crystallinity. The electrical resistivity is of the order of 104-105 Ω cm and showed semiconducting behaviour. Thermo-emf measurement revealed that the conductivity of lanthanum sulfide is p-type.  相似文献   

9.
Titanium oxide (TiO2) thin films were deposited onto glass substrates by means of spray pyrolysis method using methanolic titanyl acetyl acetonate as precursor solution. The thin films were deposited at three different temperatures namely 350, 400 and 450 °C. As-deposited thin films were amorphous having 100–300 nm thickness. The thin films were subsequently annealed at 500 °C in air for 2 h. Structural, optical and electrical properties of TiO2 thin films have been studied. Polycrystalline thin films with rutile crystal structure, as evidenced from X-ray diffraction pattern, were obtained with major reflexion along (1 1 0). Surface morphology and growth stages based on atomic force microscopy measurements are discussed. Electrical properties have been studied by means of electrical resistivity and thermoelectric power measurements. Optical study shows that TiO2 possesses direct optical transition with band gap of 3.4 eV.  相似文献   

10.
Tin sulfide (SnS) thin films have been prepared by spray pyrolysis (SP) technique using tin chloride and N, N-dimethylthiourea as precursor compounds. Thin films prepared at different temperatures have been characterized using several techniques. X-ray diffraction studies have shown that substrate temperature (Ts) affects the crystalline structure of the deposited material as well as the optoelectronic properties. The calculated optical band gap (Eg) value for films deposited at Ts = 320-396 °C was 1.70 eV (SnS). Additional phases of SnS2 at 455 °C and SnO2 at 488 °C were formed. The measured electrical resistivity value for SnS films was ∼ 1 × 104 Ω-cm.  相似文献   

11.
Optical properties of Zn-doped CuInS2 thin films grown by double source thermal evaporation method have been studied. The amount of the Zn source was determined to be 0%-4% molecular weight compared with CuInS2 source. After that, samples were annealed in vacuum at the temperature of 450 °C in quartz tube. The optical constants of the deposited films were obtained from the analysis of the experimental recorded transmission and reflexion spectral data over the wavelength range 300-1800 nm. It is observed that there is an increase in optical band gap with increasing Zn % molecular weight. It has been found that the refractive index and extinction coefficient are dependent on Zn incorporation. The complex dielectric constants of Zn-doped CuInS2 films have been calculated in the investigated wavelength range. It was found that the refractive index dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters and the high-frequency dielectric constant were determined. The electric free carrier susceptibility and the carrier concentration on the effective mass ratio were estimated according to the model of Spitzer and Fan.  相似文献   

12.
FeS2-thin films with good crystallinity were synthesized by a simple method which consists of sulphuration, under vacuum, of amorphous iron oxide thin films pre-deposited by spray pyrolysis of FeCl3·6H2O (0.03 M)-based aqueous solution onto glass substrates heated at 350 °C. At optimum sulphuration temperature (450 °C) and duration (6 h), black green layers having granular structure and high absorption coefficient (5.104 cm−1) were obtained. The study of the electrical properties of the as-prepared films vs. the temperature variations showed three temperature domain dependence of the conductivity behaviour. The first one corresponds to the high temperature range (330 K–550 K) for which an Arrhenius plot type was obtained. The activation energy value was estimated at about 61.47 meV. The second domain corresponding to the intermediate temperature range (80 K–330 K) showed a variable activation energy between the grain boundaries. The barrier height, , was estimated to 27±0.5 meV, and the standard deviation, , was evaluated at about 14±0.5 meV. We found that at lower temperatures (20 K–80 K), the conductivity is governed by two conduction types. The density of localised states, was about 2.45×1020 eV−1 cm−3.  相似文献   

13.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

14.
In this paper, the effect of S and Al concentrations on the structural, electrical, optical, thermoelectric and photoconductive properties of the films was studied. The [Al]/[Sn] and [S]/[Sn] atomic ratios in the spray solutions were varied from 10 at.% to 40 at.% and 0 to 50 at.%, respectively. X-ray diffraction analysis showed the formation of SnO2 cassiterite phase as a main phase and the numerous sulfur phases including S, SnS, SnS2 and Sn2S3 in SnO2:Al films. Scanning electron microscopy studies showed that in the absence of S, increasing the Al content results in a smaller grain size and with the addition of S, the films appear to contain small cracks and nodules. The minimum resistance of 0.175 (kΩ/□) was obtained for S-doped SnO2:Al (40 at.%) film with 20 at.% S-doping. From the Hall effect measurements, the majority carrier concentration was obtained in order of 1017-1018 cm− 3. The thermoelectric measurements showed that majority carriers change from electrons to holes for S-doping in SnO2:Al (40 at.%) thin films. The maximum Seebeck coefficient of + 774 μV/K (at T = 370 K) was obtained for S-doped SnO2:Al (10 at.%) film with 50 at.% S-doping. The band gap values were obtained in the range of 3.8-4.2 eV. The S-doped SnO2:Al (40 at.%) films have shown considerably photoconductivity more than S-doped SnO2:Al (10 at.%) with increasing S-doping. The best photoconductive property was obtained for co-doped SnO2 thin film with 40 at.% Al and 5 at.% S concentration in solution.  相似文献   

15.
Optical properties of In2O3 films prepared by spray pyrolysis   总被引:1,自引:0,他引:1  
In2O3 thin films have been deposited on glass substrates by spray pyrolysis. InCl4 was used as the solute to prepare the starting solution with a concentration of 0.1 M. The films were grown at different substrate temperatures ranging from 300 to 400 °C. The as-grown layers were optically characterized in order to evaluate the absorption coefficient, optical band gap, refractive index, extinction coefficient and other optical parameters. The influence of substrate temperature on these parameters was reported and discussed.  相似文献   

16.
CuInS2 thin films were deposited by chemical spray of aqueous solutions containing CuCl2, InCl3 and thiourea at substrate temperature of 250 °C in air and subjected to annealing at 530 °C in H2S atmosphere. Structure and composition before and after annealing were studied by XRD, EDS, XPS and Raman spectroscopy. As-sprayed films were low-crystalline, showed uniform distribution of elements in film thickness and no oxygen content. For the CuInS2 films deposited from the solutions with [Cu2+] / [In3+] = 1.0 and 1.1, H2S treatment for 30 min increased the chalcopyrite content up to 73% and 51%, respectively. CuXS phase in sprayed CIS films promotes the crystallite growth but retards the formation of chalcopyrite phase during H2S treatment.  相似文献   

17.
CuInSe2 (CIS) thin films were prepared by ion beam sputtering deposition of copper layer, indium layer and selenium layer on BK7 glass substrates followed by annealing at different temperatures for 1 h in the same vacuum chamber. The influence of annealing temperature (100-400 °C) on the structural, optical and electrical properties of CIS thin films was investigated. X-ray diffraction (XRD) analysis revealed that CIS thin films exhibit chalcopyrite phase and preferential (112) orientation when the annealing temperature is over 300 °C. Both XRD and Raman show that the crystalline quality of CIS thin film and the grain size increase with increasing annealing temperature. The reduction of the stoichiometry deviation during the deposition of CIS thin films is achieved and the elemental composition of Cu, In and Se in the sample annealed at 400 °C is very near to the stoichiometric ratio of 1:1:2. This sample also has an optical energy band gap of about 1.05 eV, a high absorption coefficient of 105 cm−1 and a resistivity of about 0.01 Ω cm.  相似文献   

18.
Seung-Yup Lee 《Thin solid films》2008,516(12):3862-3864
CuInS2 thin films were prepared using a sol-gel spin-coating method. Copper acetate monohydrate (Cu(CH3COO)2·H2O) and indium acetate (In(CH3COO)3) were dissolved into 2-propanol and 1-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 1500 rpm, and dried at 300 °C for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box. A clear chalcopyrite phase was observed without a secondary phase. Surface roughness of the films sulfurized at 500 °C was 19.1 nm. A Raman spectra measurement confirmed that no Cu-S or In-S compounds were created in the thin films.  相似文献   

19.
The paper presents a comparative analysis of the SnO2 thin layers, obtained via spray pyrolysis deposition (SPD), using polymeric precursors with different compositions and concentrations. The changes in the crystalline structure (X-ray diffraction), morphology and surface energy (atomic force microscopy and contact angle) and electric (electrical conductivity) properties of the layers were investigated. The photocatalytic efficiency of the samples was tested considering these layers' future applications in removing organic pollutants.  相似文献   

20.
AgInSnS4 thin films were prepared by adding a tin salt to the starting solution used for preparing chalcopyrite AgInS2 thin films by spray pyrolysis The AgInSnS4 films were grown at substrate temperatures in the 300-400 °C range, using an alcoholic solution comprised of silver acetate, indium chloride, tin chloride and thiourea. The tin chloride content in the starting solution was gradually varied in terms of the molar ratio x = [Sn]/([S] + [Ag]) from 0 to 0.5 to obtain Sn-doped chalcopyrite AgInS2 (x < 0.2) and spinel-like AgInSnS4 (x = 0.2-0.4). X-ray diffraction studies indicated that AgInSnS4 has a cubic spinel-like structure with lattice parameter of 10.77 A. All AgInSnS4 thin films exhibited p-type conduction, and their room temperature conductivity ranged from 10− 1 to 10− 2 S/cm. The conductivity versus 1/T plots for this material showed an Arrhenius-like behavior, from which two activation energies of Ea1 = 0.23-0.40 eV and Ea2 = 0.07-0.20 eV were determined. These results suggest that the grain boundary scattering and the ionization of shallow acceptors dominate the charge carrier transport in the sprayed AgInSnS4 thin films. The AgInSnS4 absorption spectrum revealed an energy gap around Eg = 1.89 eV, which was associated to direct-allowed transitions. To our knowledge, the quaternary compound has been prepared for the first time using spray pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号