首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
《硬质合金》2020,(3):210-219
利用OM、SEM、XRD进行微观组织与相组成分析,研究了铁镍比与VC对铁镍基硬质合金组织性能的影响规律。结果表明:添加质量分数0.5%的VC可显著提高合金硬度并细化组织,铁镍比越低,合金硬度提高幅度越大、组织细化效果越显著。当铁镍质量分数比为1∶5时,添加0.5%VC的合金硬度达91.5 HRA,WC平均晶粒度为0.6μm,相比于没有添加VC的合金,硬度增幅为4.7 HRA,WC晶粒尺寸降幅为2.4μm。当铁镍质量分数比小于1∶3时,VC的添加可提高合金抗弯强度,当铁镍质量分数比大于1∶3时,VC的添加反而降低合金抗弯强度。当合金中没有添加VC时,铁镍比的降低导致合金硬度下降,同时合金组织中的WC晶粒也明显粗化,这是由于WC在铁中的固溶度较小,铁含量的增加可有效抑制WC的溶解析出长大。当合金中添加VC时,铁镍比对合金硬度与晶粒度影响均较小,合金硬度均在91~92 HRA范围内,合金中WC平均晶粒度均为0.6μm。在合金抗弯强度方面,随着铁镍比的降低,有无添加VC的合金抗弯强度均整体呈先下降后上升的趋势,并分别在铁镍质量分数比1∶3与1∶2时达到峰值。综合来看,铁镍质量分数比1∶3,添加0.5%VC的合金具有最佳的综合性能,硬度达91HRA,抗弯强度达3 590 MPa,晶粒度0.6μm。  相似文献   

2.
以超细WC粉末和超细WC-6Co复合粉末为原料,添加VC/Cr3C2作为晶粒长大抑制剂,同时进行配碳,采用高能球磨和气压强化烧结制备晶粒度小于0.5μm的WC-0.5Co超细硬质合金,研究了不同VC/Cr3C2添加量及配碳量对其组织与性能的影响。结果表明:VC/Cr3C2有效抑制了烧结过程中WC晶粒的长大,显著提高了WC-0.5Co超细硬质合金的硬度。当VC/Cr3C2添加量为0.73%(质量分数,下同)时,合金的硬度(HV0.05)最高,达到32 658 MPa;同时一定的配碳量有利于控制合金中的脱碳,提高合金性能,当配碳量为0.2%时,WC-0.5Co-0.73VC/Cr3C2合金的综合力学性能最好,断裂韧性为6.935 MPa·m1/2,维氏硬度(HV0.05)为32 216 MPa。  相似文献   

3.
李海艳  刘宁  王丽利 《热处理》2010,25(2):31-34
通过向WC-6.5%Co硬质合金中添加0%~2.0%的晶粒长大抑制剂Cr_3C_2,研究了其对硬质合金组织和力学性能的影响。研究结果表明,Cr_3C_2的添加细化了WC晶粒,但不能完全抑制WC晶粒的异常长大。Cr_3C_2使合金的硬度提高,但是却降低了合金的致密度和抗弯强度。Cr_3C_2添加量为0.5%时,合金的综合性能最好。  相似文献   

4.
《硬质合金》2017,(4):254-262
采用粉末冶金法制备WC-Co硬质合金,研究了单一添加0%~1.2%(文中含量无特殊说明的均为质量分数)TiN和复合添加不同比例TiN/Cr_3C_2晶粒长大抑制剂对WC-Co硬质合金组织和性能的影响。结果表明:添加TiN后,WC晶粒明显细化且晶粒尺寸分布集中,合金硬度上升。TiN与粘结相中的W和C形成(Ti,W)(C,N)固溶体,起到了细化了WC晶粒的作用,但是由于固溶体本身的脆性和粘结相对其润湿性较差,使合金的强度和韧性下降。TiN单一添加量为0.4%时,合金综合性能最佳,硬度值可达到1 770 HV3,强度值为2 870 MPa,韧性达到10.37 MPa·m~(1/2);复合添加w(TiN)∶w(Cr_3C_2)为1∶3时,合金综合性能最佳,硬度值可达到1 770 HV3,强度值为2 860 MPa,韧性达到10.23 MPa·m~(1/2)。  相似文献   

5.
詹斌  刘宁 《硬质合金》2010,27(4):214-220
研究了添加0%~2.5%(质量分数)晶粒长大抑制剂VC对Ti(C,N)基金属陶瓷组织和性能的影响。结果表明,添加VC后,组织中晶粒的芯部变小、环形相变薄,1.5%~2.5%VC的加入使材料的晶粒显著细化。添加VC可提高材料的抗弯强度和硬度,添加量为1%时,抗弯强度达到最大值1370MPa,添加量为2.5%时,维氏硬度达到最大值15.3GPa;适量添加VC可提高材料的断裂韧性,添加量为1%时,达到最大值8.6MPa·m1/2。VC添加量为0.5%时,材料维氏硬度和断裂韧性分别为14.4GPa和7.6MPa·m1/2,综合力学性能最好。  相似文献   

6.
研究了在WC—10wt%Ni合金中添加(0~2)wt%的作抑制剂的碳化物(VC.Cr3C2,TaC,TiC和ZrC),FSSS粒度为0.6μm的WC粉末(SEM平均粒度为0.351xm)的WC晶粒长大及抑制其长大的情况:在Ni粘结相硬质合金中,即使在抑制剂的添加量加大的情况下,合金的总碳对于WC晶粒长大仍是一个极其重要的因素:与低碳牌号相比,高碳合金的晶粒长大是非常显著的,这导致了硬度明显地降低:迄今为止VC被证明是WC—Ni硬质合金中最有效的晶粒长大抑制荆,紧接其后是TaC,Cr3C2,TiC和ZrC。硬度随添加量的增加而增加,但是达到最大值后硬度保持不变:在WC-Fe-(VC)合金上的试验表明在以Fe作粘结相的合金中,即使不添加抑制剂,WC的晶粒长大也会受到极其明显的限制:粘结相的化学性质极大地影响了WC晶粒的连续和不连续长大:其化学性质是由粘结相基体(Fe,C0,Ni)的性质、合金的总碳(这一点决定了粘结相基体的成分)以及抑制剂的添加量所决定的.  相似文献   

7.
研究了添加0~2.0%晶粒长大抑制剂VC对纳米Ti(C,N)基金属陶瓷组织和性能的影响。结果表明,VC的加入使金属陶瓷的晶粒得到细化,抗弯强度、硬度提高,断裂韧度下降。在VC添加量为1.0%时,该金属陶瓷的抗弯强度为1204.6 MPa,维氏硬度为14.5 GPa,其综合性能最高。  相似文献   

8.
《硬质合金》2017,(1):14-20
硬质合金的平均晶粒度影响着合金的使用性能,而硬质相粒度分布对合金性能的影响较少报导。本文选用经典工艺制备的4批粘结相质量分数6%、平均晶粒度为1.6μm、不同WC晶粒离散度试样,1批网状合金试样,1批粘结相质量分数8%、平均晶粒度为1.6μm、WC晶粒高离散度试样,通过Palmqvist压痕实验测定其断裂韧性来研究WC晶粒离散度对硬质合金断裂韧性的影响。结果表明,经典试样WC晶粒离散系数由0.425 8增大至0.533 7时,断裂韧性由15.7 MPa·m~(1/2)降至11.6 MPa·m~(1/2),维氏硬度基本保持1 420 HV30左右;粘结相含量、平均晶粒度及维氏硬度相同的网状结构硬质合金,其WC离散系数为0.653 6时,Palmqvist压痕断裂韧性高达16.0 MPa·m~(1/2);粘结相质量分数为8%的试样,其WC离散系数为0.612 1,维氏硬度为1 350 HV30,断裂韧性仅为12.5 MPa·m~(1/2)。离散度小的硬质相分布及特别的微观结构设计都可以在不降低硬度的情况下提升合金的韧性。  相似文献   

9.
在细晶硬质合金原料粉末中添加少量4μm和11μm的WC粉末模拟合金中的晶粒一般夹粗和异常长大,研究粗晶WC含量及尺寸对WC-10%Co细晶硬质合金组织与性能的影响。结果表明:添加2%~8%的4μmWC粉末的合金,合金中的粗晶WC零星分布,粗晶尺寸约4~10μm,粗晶面积分数约0.29%~1.42%;添加2%~8%的11μmWC粉末的合金,合金中的夹粗现象非常明显,粗晶WC大于10μm,粗晶面积分数约0.99%~5.03%,呈现较明显的双峰组织。粗晶WC的粒度和含量影响WC-10%Co细晶硬质合金的性能,当参比原料粉末中添加相同规格的WC粉末时,随着添加量的增加,磁力、硬度、横向断裂强度、抗压强度逐渐下降,断裂韧性逐渐增加。添加2%的4μmWC粉末的WC-10%Co细晶合金,粗晶WC尺寸小于10μm且均匀分布,每平方毫米粗晶个数约为438,粗晶面积分数为0.29%,综合性能可达到未含夹粗WC合金的性能。  相似文献   

10.
本文采用低压烧结的方式制备了性能良好的 WC–Ni–Fe–Mo 硬质合金,研究分析了不同 Mo 添加量对 WC–Ni–Fe硬质合金组织性能的影响。结果表明:不同 Mo 添加量对 WC–Ni–Fe 硬质合金的微观结构与性能有着显著地影响。添加微量的 Mo 可以抑制 WC-Ni-Fe 硬质合金中 WC 晶粒的溶解再析出长大,一定程度上可以细化 WC 晶粒。随着 Mo 在 WC–Ni–Fe 合金中的含量增加,合金孔隙率逐渐下降。密度先下降后升高,而抗弯强度的变化趋势则相反。当 Mo 添加量较少时,合金的硬度较为稳定,抗弯强度明显提升,而断裂韧性逐渐降低;当 Mo 添加量较大时,合金的硬度、抗弯强度降低,而断裂韧性上升。当 Mo 的添加量为0.5 wt %时,合金具有最佳的力学性能,可与同比例 Co 含量的 WC–Co 硬质合金相媲美,其维氏硬度为 HV 1460、抗弯强度为 4245 MPa、断裂韧性为 17.01 MPa·m1/2。  相似文献   

11.
工艺条件对WC-12%Co超细硬质合金性能的影响   总被引:2,自引:2,他引:0  
赵声志  张忠健 《硬质合金》2012,29(3):141-145
采用不同粒度的WC粉,加入VC、Cr3C2做抑制剂,制备WC-12%Co超细硬质合金。采用D60-25型钴磁仪测量合金磁饱和,利用排水法测定合金密度,采用三点弯曲法在CMT4504拉伸机上检测合金的抗弯强度,试样抛光后在JEOL-6701F扫描电镜下观察合金的显微组织。研究了不同的WC粉末粒度、球磨时间、烧结工艺对WC-12%Co的超细硬质合金性能的影响。结果表明:过压烧结可明显提高合金抗弯强度、硬度和密度;随着球磨时间的增加,合金硬度不断上升,抗弯强度先增后减;采用0.55μm粒度WC粉制备的合金的硬度明显高于0.70μm粒度WC粉制备的合金。在本次实验中,选用0.55μm的WC粉末原料,混合料球磨85 h,通过过压烧结,可制备出性能优良的WC-12%Co超细硬质合金,硬度HV≥1 800,抗弯强度≥3 400 N/mm2。  相似文献   

12.
This paper deals with the effects of codoped VC/Cr3C2 and sintering temperature on the magnetic and mechanical properties of ultra-fine grained WC-12%Co alloys. Results show that the synergistic action of doped VC/Cr3C2 in optimal proportion enhances both the hardness and transverse rupture strength (TRS) of the alloys, with more homogeneous microstructure. When the alloy is sintered at 1430℃ and with 0.5% Cr3C2/0.2% VC, the TRS reaches 3786 MPa, the hardness is 91.7 HRA and the grain size srnaller than 0.6 μm. The numerical analyses on grain growth during the sintering process show that both VC precipitating on the WC grain boundary and Cr3C2 dissolving in the Co phase decrease the solid/liquid interfacial energy γ, the process of dissolution and reprecipitation is greatly retarded and the coarsening of WC grains is inhibited.  相似文献   

13.
烧结温度对含钽双晶硬质合金组织和性能的影响   总被引:1,自引:0,他引:1  
同时采用不同粒度WC原料制备WC-TaC-Co硬质合金,并在不同的温度下进行烧结。研究表明:合金主要由两相组成,晶粒大小相间。所测硬度、密度和矫顽磁力随温度升高先升后降,抗弯强度随烧结温度升高而略有升高,但变化不明显。烧结温度为1450℃保温1.5h时,合金的综合性能达到最优,维氏硬度(HV30)为1668.8,抗弯强度为988MPa,密度为14.87g/cm3,矫顽磁力为15.2kA/m,此时Ta元素对WC晶粒的抑制效果最佳,晶粒尺寸达到0.75μm±0.33μm。  相似文献   

14.
研究了VC/Cr3C2添加剂对WC-12Co超细硬质合金的显微组织、硬度和抗弯强度(TRS)的影响.结果表明,舍一定比例VC/Cr3C2添加剂的合金具有更均匀的微观组织和优异的力学性能.当添加剂含量(质量分数)为0.5%VC/0.2%Cr3C2时,1430℃烧结制备的WC-12Co超细硬质合金的抗弯强度达3786 MPa,硬度达91.7 HRA.VC添加剂对WC晶粒的连续长大和非连续长大的抑制作用比Cr3C2添加剂更有效.此外,当烧结温度较高时,VC/Cr3C2添加剂对WC晶粒长大的抑制效果更显著.VC和Cr3C2添加剂抑制WC晶粒长大的作用机理为:VC和Cr3C2添加剂降低了WC相在粘结相中的过饱和度,从而降低烧结温度下粘结相中WC相溶解-析出过程的驱动力,起到阻碍WC晶粒长大的作用.  相似文献   

15.
研究了立方碳化物 Cr3C2、VC 以及稀土 La 添加剂对 WC-Co 合金中 WC 晶粒形貌以及合金硬度与韧性的影响。为了强化烧结过程中 WC 晶粒生长的驱动力,采用具有高烧结活性的纳米 W 和纳米 C 为原料。为了获得合金中 WC 晶粒的三维形貌,采用扫描电镜直接观察合金烧结体的自然表面。结果表明,合金添加剂对WC 晶粒形貌及其粒度分布特征以及合金的硬度与韧性有较大影响。由于均质三角棱柱形板状 WC 晶粒的形成,WC-10Co-0.6Cr3C2-0.06La2O3 合金具有极佳的硬度与韧性组合。讨论了合金中 WC 晶粒形貌的调控机制以及合金中 WC 晶粒形貌特征对合金性能的影响。  相似文献   

16.
SPS烧结WC-5%Co纳米复合粉硬质合金   总被引:1,自引:0,他引:1  
采用喷雾干燥、流态化床化学转化法生产的WC-5%Co纳米复合粉为原料,研究了放电等离子体烧结(SPS)对超细硬质合金显微结构和性能的影响,同时对SPS烧结、低压烧结、真空烧结等三种工艺进行了比较。结果表明:采用SPS烧结可以在较低的温度下实现超细硬质合金的固相烧结,使合金快速致密化,当1170℃保温6min、压力为50MPa时合金可以获得最好的力学性能;其显微硬度HV30、抗弯强度、断裂韧性分别为1870、3230MPa、10.96MPa/m1/2。低压烧结可促进颗粒在液相中重排,硬质合金压坯经8MPa、1410℃、保温45min烧结,也可以获得比较好的力学性能;而传统真空烧结,合金孔隙度比较高,晶粒不均匀,性能较差。  相似文献   

17.
The influence of Cr3C2 and VC addition on the microstructure and mechanical properties of WC–MgO composites hot-pressed at 1650 °C for 90 min was comprehensively investigated. The grain growth of WC was significantly retarded and the homogeneity of MgO particulate dispersion was effectively improved with the addition of 0.5 wt.% Cr3C2 or 0.5 wt.% VC. The indentation size effect (ISE) on hardness was restrained and the load-independent hardness was increased by doping grain growth inhibitors. Improvements on fracture toughness of hot-pressed samples were also observed due to the refined WC grains and uniformly dispersed MgO particulates. In addition, experimental results demonstrated that Niihara's equation was preferable for estimating the indentation fracture toughness, by comparing the fracture toughness evaluated using the single-edge V-notch beam (SEVNB) method with the values estimated through the Vickers indentation technique.  相似文献   

18.
The nanocomposite WC-Co powders were prepared through planetary ball milling method. Effects of grain growth inhibitor addition and the vacuum sintering parameters on the microstructure and properties of ultrafine WC-10Co cemented carbides were investigated using X-ray diffractometer, scanning electron microscope and mechanical property tester. The results show that VC and NbC additions can refine the WC grains, decrease the volume fraction of Co3W3C phase in ultrafine WC-10Co cemented carbides, and increase the hardness and fracture toughness of the base alloys. After sintering for 60 min at 1400 °C, the average grain size and hardness of ultrafine-grained WC-10Co-1VC cemented carbide are 470 nm and HRA 91.5, respectively. The fracture toughness of cemented carbide WC-10Co-1NbC alloy is over 7 MN·m?3/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号