首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
Run-down of L-type Ca2+ channels in CHO cells stably expressing alpha 1c, alpha 1c beta 1a, or alpha 1c beta 1a alpha 2 delta gamma subunits was studied using the patch-clamp technique (single channel recording). The channel activity (NPo) of alpha 1c channels was increased 4- and 8-fold by coexpression with beta 1a and beta 1a alpha 2 delta gamma, respectively. When membranes containing channels composed of different subunits were excised into basic internal solution, the channel activity exhibited run-down, the time-course of which was independent of the subunit composition. The run-down was restored by the application of calpastatin (or calpastatin contained in cytoplasmic P-fraction) + H-fraction (a high molecular mass fraction of bovine cardiac cytoplasm) + 3 mM ATP, which has been shown to reverse the run-down in native Ca2+ channels in the guinea-pig heart. The restoration level was 64.7, 63.5, and 66.4% for channels composed of alpha 1c, alpha 1c beta 1a, and alpha 1c beta 1a alpha 2 delta gamma, respectively, and was thus also independent of the subunit composition. We conclude that run-down of L-type Ca2+ channels occurs via the alpha 1 subunit and that the cytoplasmic factors maintaining Ca2+ channel activity act on the alpha 1 subunit.  相似文献   

2.
Voltage-gated calcium channels are composed of a main pore-forming alpha1 moiety, and one or more auxiliary subunits (beta, alpha2 delta) that modulate channel properties. Because modulatory properties may vary greatly with different channels, expression systems, and protocols, it is advantageous to study subunit regulation with a uniform experimental strategy. Here, in HEK 293 cells, we examine the expression and activation gating of alpha1E calcium channels in combination with a beta (beta1-beta4) and/or the alpha2 delta subunit, exploiting both ionic- and gating-current measurements. Furthermore, to explore whether more than one auxiliary subunit can concomitantly specify gating properties, we investigate the effects of cotransfecting alpha2delta with beta subunits, of transfecting two different beta subunits simultaneously, and of COOH-terminal truncation of alpha1E to remove a second beta binding site. The main results are as follows. (a) The alpha2delta and beta subunits modulate alpha1E in fundamentally different ways. The sole effect of alpha2 delta is to increase current density by elevating channel density. By contrast, though beta subunits also increase functional channel number, they also enhance maximum open probability (Gmax/Qmax) and hyperpolarize the voltage dependence of ionic-current activation and gating-charge movement, all without discernible effect on activation kinetics. Different beta isoforms produce nearly indistinguishable effects on activation. However, beta subunits produced clear, isoform-specific effects on inactivation properties. (b) All the beta subunit effects can be explained by a gating model in which subunits act only on weakly voltage-dependent steps near the open state. (c) We find no clear evidence for simultaneous modulation by two different beta subunits. (d) The modulatory features found here for alpha1E do not generalize uniformly to other alpha1 channel types, as alpha1C activation gating shows marked beta isoform dependence that is absent for alpha1E. Together, these results help to establish a more comprehensive picture of auxiliary-subunit regulation of alpha1E calcium channels.  相似文献   

3.
The epithelial Na+ Channel (ENaC) mediates Na+ reabsorption in a variety of epithelial tissues. ENaC is composed of three homologous subunits, termed alpha, beta, and gamma. All three subunits participate in channel formation as the absence of any one subunit results in a significant reduction or complete abrogation of Na+ current expression in Xenopus oocytes. To determine the subunit stoichiometry, a biophysical assay was employed utilizing mutant subunits that display significant differences in sensitivity to channel blockers from the wild type channel. Our results indicate that ENaC is a tetrameric channel with an alpha2 beta gamma stoichiometry, similar to that reported for other cation selective channels, such as Kv, Kir, as well as voltage-gated Na+ and Ca2+ channels that have 4-fold internal symmetry.  相似文献   

4.
The G-protein-regulated, inwardly rectifying K+ (GIRK) channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK channels are distributed predominantly throughout the heart, brain, and pancreas. In recent years, GIRK channels have received a great deal of attention for their direct G-protein betagamma (Gbetagamma) regulation. Native cardiac IKACh is composed of GIRK1 and GIRK4 subunits (Krapivinsky, G., Gordon, E. A., Wickman, K. A., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). Here, we examine the quaternary structure of IKACh using a variety of complementary approaches. Complete cross-linking of purified atrial IKACh protein formed a single adduct with a total molecular weight that was most consistent with a tetramer. In addition, partial cross-linking of purified IKACh produced subsets of molecular weights consistent with monomers, dimers, trimers, and tetramers. Within the presumed protein dimers, GIRK1-GIRK1 and GIRK4-GIRK4 adducts were formed, indicating that the tetramer was composed of two GIRK1 and two GIRK4 subunits. This 1:1 GIRK1 to GIRK4 stoichiometry was confirmed by two independent means, including densitometry of both silver-stained and Western-blotted native atrial IKACh. Similar experimental results could potentially be obtained if GIRK1 and GIRK4 subunits assembled randomly as 2:2 and equally sized populations of 3:1 and 1:3 tetramers. We also show that GIRK subunits may form homotetramers in expression systems, although the evidence to date suggests that GIRK1 homotetramers are not functional. We conclude that the inwardly rectifying atrial K+ channel, IKACh, a prototypical GIRK channel, is a heterotetramer and is most likely composed of two GIRK1 subunits and two GIRK4 subunits.  相似文献   

5.
Cyclic-nucleotide-activated, nonselective cation channels have a central role in sensory transduction. They are most likely tetramers, composed of two subunits (alpha and beta or 1 and 2), with the former, but not the latter, being able to form homomeric cyclic-nucleotide-activated channels. Identified members of this channel family now include, in vertebrates, the rod and cone channels mediating visual transduction and the channel mediating olfactory transduction, each apparently with distinct alpha- and beta-subunits. Homologous channels have also been identified in Drosophila melanogaster and Caenorhabditis elegans. By co-expressing any combination of two alpha-subunits, or alpha- and beta-subunits, of this channel family in HEK 293 cells, we have found that they can all co-assemble functionally with each other, including those from fly and nematode. This finding suggests that the subunit members so far identified form a remarkably homogeneous and conserved group, functionally and evolutionarily, with no subfamilies yet identified. The ability to cross-assemble allows these subunits to potentially generate a diversity of heteromeric channels, each with properties specifically suited to a particular cellular function.  相似文献   

6.
The interactions of the inhalation anesthetic agent isoflurane with ligand-gated chloride channels were studied using transient expression of recombinant human receptors in a mammalian cell line. Isoflurane enhanced gamma-aminobutyric acid (GABA)-activated chloride currents in cells that expressed heteromeric GABAA receptors consisting of combinations of alpha 1 or alpha 2, beta 1, and gamma 2 subunits and in cells that expressed receptors consisting of combinations of only alpha and beta subunits. Receptors consisting of alpha 2 and gamma 2 subunits were poorly expressed but were sensitive to isoflurane. Receptors consisting of beta 1 and gamma 2 subunits were not expressed. Isoflurane also enhanced glycine-activated chloride currents through homomeric alpha glycine receptors but did not enhance GABA currents in cells expressing homomeric rho 1 receptors. These results show that not all ligand-gated chloride channel receptors are sensitive to isoflurane and, therefore, that the anesthetic interacts with specific structural determinants of these ion channel proteins.  相似文献   

7.
Cyclic nucleotide-gated (CNG) channels conduct Na+, K+ and Ca2+ currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2+ concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2+ signaling depends on its specific Ca2+ conductance, it is necessary to analyze Ca2+ permeation for each individual channel type. We have analyzed Ca2+ permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2+ current over the physiological range of Ca2+ concentrations and found that Ca2+ permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2+ permeation is controlled by the Ca2+-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2+ signals.  相似文献   

8.
PA28 is a 180,000-dalton protein that activates hydrolysis of small nonubiquitinated peptides by the 20 S proteasome. PA28 is composed of two homologous subunits, alpha and beta, arranged in alternating positions in a ring-shaped oligomer with a likely stoichiometry of (alphabeta)3. Our previous work demonstrated that the carboxyl terminus of the alpha subunit was necessary for PA28 to bind to and activate the proteasome. The goals of this work were to define the exact structural basis for this effect and to determine the relative roles of the alpha and beta subunits in proteasome activation. Each subunit and various mutants of the alpha subunit were expressed in Escherichia coli and purified. PA28alpha stimulated the proteasome, but had a much greater Kact than native heteromeric PA28. In contrast, PA28beta was unable to stimulate the proteasome. Mutants of the alpha subunit in which the carboxyl-terminal tyrosine residue was deleted or substituted with charged amino acids could neither bind to nor activate the proteasome. However, substitution of the carboxyl-terminal tyrosine with other amino acids resulted in proteins which could stimulate the proteasome to various extents. Tryptophan mutants stimulated the proteasome as well as did native PA28, whereas serine or phenylalanine mutants stimulated the proteasome much poorer than did wild type PA28alpha. Deletion of the "KEKE" motif, a 28-amino acid domain near the amino terminus of PA28alpha, had no effect on proteasome stimulatory activity. Hetero-oligomeric PA28 proteins were reconstituted from isolated wild type and mutant subunits. PA28 reconstituted from wild type subunits had structural and functional properties that were indistinguishable from those of the native hetero-oligomeric protein. PA28 molecules reconstituted from inactive alpha subunits and wild type beta subunits remained inactive. However, PA28 molecules reconstituted from suboptimally active alpha mutants and wild type beta subunits had the same activity as native heteromeric PA28. These results indicate that the beta subunit modulates PA28 activity, perhaps by influencing the affinity of PA28 for the proteasome.  相似文献   

9.
Cyclic nucleotide-gated (CNG) ion channels of retinal photoreceptors and olfactory neurons are multimeric proteins of unknown stoichiometry. To investigate the subunit interactions that occur during CNG channel activation, we have used tandem cDNA constructs of the rod CNG channel to generate heteromultimeric channels composed of wild-type and mutant subunits. We introduced point mutations that affect channel activation: 1) D604M, which alters the relative ability of agonists to promote the allosteric conformational change(s) associated with channel opening, and 2) T560A, which primarily affects the initial binding affinity for cGMP, and to a lesser extent, the allosteric transition. At saturating concentrations of agonist, heteromultimeric channels were intermediate between wild-type and mutant homomultimers in agonist efficacy and apparent affinity for cGMP, cIMP, and cAMP, consistent with a model for the allosteric transition involving a concerted conformational change in all of the channel subunits. Results were also consistent with a model involving independent transitions in two or three, but not one or four, of the channel subunits. The behavior of the heterodimers implies that the channel stoichiometry is some multiple of 2 and is consistent with a tetrameric quaternary structure for the functional channel complex. Steady-state dose-response relations for homomultimeric and heteromultimeric channels were well fit by a Monod, Wyman, and Changeux model with a concerted allosteric opening transition stabilized by binding of agonist.  相似文献   

10.
Rate constants for hemin dissociation from the alpha and beta subunits of native and recombinant human hemoglobins were measured as a function of protein concentration at pH 7.0, 37 degrees C, using H64Y/V68F apomyoglobin as a hemin acceptor reagent. Hemin dissociation rates were also measured for native isolated alpha and beta chains and for recombinant hemoglobin tetramers stabilized by alpha subunit fusion. The rate constant for hemin dissociation from beta subunits in native hemoglobin increases from 1.5 h-1 in tetramers at high protein concentration to 15 h-1 in dimers at low concentrations. The rate of hemin dissociation from alpha subunits in native hemoglobin is significantly smaller (0.3-0.6 h-1) and shows little dependence on protein concentration. Recombinant hemoglobins containing a fused di-alpha subunit remain tetrameric under all concentrations and show rates of hemin loss similar to those observed for wild-type and native hemoglobin at high protein concentration. Rates of hemin dissociation from monomeric alpha and beta chains are much greater, 12 and 40 h-1, respectively, at pH 7, 37 degrees C. Aggregation of monomers to form alpha1beta1 dimers greatly stabilizes bound hemin in alpha chains, decreasing its rate of hemin loss approximately 20-fold. In contrast, dimer formation has little stabilizing effect on hemin binding to beta subunits. A significant reduction in the rate of hemin loss from beta subunits does occur after formation of the alpha1beta2 interface in tetrameric hemoglobin. These results suggest that native human hemoglobin may have evolved to lose heme rapidly after red cell lysis, allowing the prosthetic group to be removed by serum albumin and apohemopexin.  相似文献   

11.
Modulation of neuronal voltage-gated Ca channels has important implications for synaptic function. To investigate the mechanisms of Ca channel modulation, we compared the G-protein-dependent facilitation of three neuronal Ca channels. alpha1A, alpha1B, or alpha1E subunits were transiently coexpressed with alpha2-deltab and beta3 subunits in HEK293 cells, and whole-cell currents were recorded. After intracellular dialysis with GTPgammaS, strongly depolarized conditioning pulses facilitated currents mediated by each Ca channel type. The magnitude of facilitation depended on current density, with low-density currents being most strongly facilitated and high-density currents often lacking facilitation. Facilitating depolarizations speeded channel activation approximately 1.7-fold for alpha1A and alpha1B and increased current amplitudes by the same proportion, demonstrating equivalent facilitation of G-protein-inhibited alpha1A and alpha1B channels. Inactivation typically obscured facilitation of alpha1E current amplitudes, but the activation kinetics of alpha1E currents showed consistent and pronounced G-protein-dependent facilitation. The onset and decay of facilitation had the same kinetics for alpha1A, alpha1B, and alpha1E, suggesting that Gbeta gamma dimers dissociate from and reassociate with these Ca channels at very similar rates. To investigate the structural basis for N-type Ca channel modulation, we expressed a mutant of alpha1B missing large segments of the II-III loop and C terminus. This deletion mutant exhibited undiminished G-protein-dependent facilitation, demonstrating that a Gbeta gamma interaction site recently identified within the C terminus of alpha1E is not required for modulation of alpha1B.  相似文献   

12.
Calcium channel beta subunits have profound effects on how alpha1 subunits perform. In this article we summarize our present knowledge of the primary structures of beta subunits as deduced from cDNAs and illustrate their different properties. Upon co-expression with alpha1 subunits, the effects of beta subunits vary somewhat between L-type and non-L-type channels mostly because the two types of channels have different responses to voltage which are affected by beta subunits, such as long-lasting prepulse facilitation of alpha1C (absent in alpha1E) and inhibition by G protein betagamma dimer of alpha1E, absent in alpha1C. One beta subunit, a brain beta2a splice variant that is palmitoylated, has several effects not seen with any of the others, and these are due to palmitoylation. We also illustrate the finding that functional expression of alpha1 in oocytes requires a beta subunit even if the final channel shows no evidence for its presence. We propose two structural models for Ca2+ channels to account for "alpha1 alone" channels seen in cells with limited beta subunit expression. In one model, beta dissociates from the mature alpha1 after proper folding and membrane insertion. Regulated channels seen upon co-expression of high levels of beta would then have subunit composition alpha1beta. In the other model, the "chaperoning" beta remains associated with the mature channel and "alpha1 alone" channels would in fact be alpha1beta channels. Upon co-expression of high levels of beta the regulated channels would have composition [alpha1beta]beta.  相似文献   

13.
Voltage-dependent, ion-selective channels such as Na+, Ca2+ and K+ channel proteins function as tetrameric assemblies of identical or similar subunits. The clustering of four subunits is thought to create an aqueous pore centred at the four-fold symmetry axis. The highly conserved, amino-terminal cytoplasmic domain (approximately 130 amino acids) immediately preceding the first putative transmembrane helix S1 is designated T1. It is known to confer specificity for tetramer formation, so the heteromeric assembly of K+-channel subunits is an important mechanism for the observed channel diversity. We have determined the crystal structure of the T1 domain of a Shaker potassium channel at 1.55 A resolution. The structure reveals that four identical subunits are arranged in a four-fold symmetry surrounding a centrally located pore about 20 A in length. Subfamily-specific assembly is provided primarily by polar interactions encoded in a conserved set of amino acids at its tetramerization interface. Most highly conserved amino acids in the T1 domain of all known potassium channels are found in the core of the protein, indicating a common structural framework for the tetramer assembly.  相似文献   

14.
Sensory transduction in olfactory neurons involves the activation of a cyclic nucleotide-gated (CNG) channel by cAMP. Previous studies identified a CNG channel alpha subunit (CNG2) and a beta subunit (CNG5), which when heterologously expressed form a channel with properties similar but not identical to those of native olfactory neurons. We have cloned a new type of CNG channel beta subunit (CNG4. 3) from rat olfactory epithelium. CNG4.3 derives from the same gene as the rod photoreceptor beta subunit (CNG4.1) but lacks the long, glutamic acid-rich domain found in the N terminus of CNG4.1. Northern blot and in situ hybridization revealed that CNG4.3 is expressed specifically in olfactory neurons. Expression of CNG4.3 in human embryonic kidney 293 cells did not lead to detectable currents. Coexpression of CNG4.3 with CNG2 induced a current with significantly increased sensitivity for cAMP whereas cGMP affinity was not altered. Additionally, CNG4.3 weakened the outward rectification of the current in the presence of extracellular Ca2+, decreased the relative permeability for Ca2+, and enhanced the sensitivity for L-cis diltiazem. Upon coexpression of CNG2, CNG4.3, and CNG5, a conductance with a cAMP sensitivity greater than that of either the CNG2/CNG4.3 or the CNG2/CNG5 channel and near that of native olfactory channel was observed. Our data suggest that CNG4.3 forms a subunit of the native olfactory CNG channel. The expression of various CNG4 isoforms in retina and olfactory epithelium indicates that the CNG4 subunit may be necessary for normal function of both photoreceptor and olfactory CNG channels.  相似文献   

15.
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating.  相似文献   

16.
Serotonin (5-hydroxytryptamine) type 3 receptors (5-HT3R) and nicotinic acetylcholine receptors are structurally and functionally related proteins, yet distinct members of the family of ligand-gated ion channels. For most members of this family a diversity of heteromeric receptors is known at present. In contrast, known 5-HT3R subunits are all homologs of the same 5-HT3R-A subunit and form homopentameric receptors. Here we show, by heterologous expression followed by immunoprecipitation, that 5-HT3R and nicotinic acetylcholine receptor alpha4 subunits coassemble into a novel type of heteromeric ligand-gated ion channel, which is activated by 5-HT. The Ca2+ permeability of this heteromeric ion channel is enhanced as compared with that of the homomeric 5-HT3R channel. Heteromeric 5-HT3/alpha4 and homomeric 5-HT3Rs have similar pharmacological profiles, but distinct sensitivities to block by the antagonist d-tubocurarine. Coassembly of subunits beyond the boundaries of ligand-gated ion channel families may constitute an important mechanism contributing to the diverse properties and functions of native neurotransmitter receptors.  相似文献   

17.
Cardiac inotropic effects of beta adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (alpha 1, beta and alpha 2-delta), biochemical studies have revealed that two subunits, alpha 1 and beta, are phosphorylated in vitro by protein kinase A, the alpha 1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C alpha 1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits beta and alpha 2-delta. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the beta subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the alpha 1 and the beta subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

18.
In the present study, we investigated the role of channel subunits in the membrane targeting of voltage-dependent L-type calcium channel complexes. We co-expressed the calcium channel pore-forming alpha1C subunit with different accessory beta subunits in HEK-tsA201 cells and examined the subcellular localization of the channel subunits by immunohistochemistry using confocal microscopy and whole-cell radioligand binding studies. While the pore-forming alpha1C subunit exhibited perinuclear staining when expressed alone, and several of the wild-type and mutant beta subunits also exhibited intracellular staining, co-expression of the alpha1C subunit with either the wild-type beta2a subunit, a palmitoylation-deficient beta2a(C3S/C4S) mutant or three other nonpalmitoylated beta isoforms (beta1b, beta3, and beta4 subunits) resulted in the redistribution of both the alpha1C and beta subunits into clusters along the cell surface. Furthermore, the redistribution of calcium channel complexes to the plasma membrane was observed when alpha1C was co-expressed with an N- and C-terminal truncated mutant beta2a containing only the central conserved regions. However, when the alpha1C subunit was co-expressed with an alpha1 beta interaction-deficient mutant, beta2aBID-, we did not observe formation of the channels at the plasma membrane. In addition, an Src homology 3 motif mutant of beta2a that was unable to interact with the alpha1C subunit also failed to target channel complexes to the plasma membrane. Interestingly, co-expression of the pore-forming alpha1C subunit with the largely peripheral accessory alpha2 delta subunit was ineffective in recruiting alpha1C to the plasma membrane, while co-distribution of all three subunits was observed when beta2a was co-expressed with the alpha1C and alpha2 delta subunits. Taken together, our results suggested that the signal necessary for correct plasma membrane targeting of the class C L-type calcium channel complexes is generated as a result of a functional interaction between the alpha1 and beta subunits.  相似文献   

19.
Episodic ataxia type-1 is a rare human neurological syndrome which occurs during childhood and persists through the whole life of affected patients. Several heterozygous point mutations have been found in the coding sequence of the voltage-gated potassium channel gene hKv1.1 of different affected families. V408A and E325D mutations are located in the cytoplasmic putative pore region of hKv1.1 channels and profoundly alter their gating properties. V408A channels showed increased kinetic rates of activation, deactivation and C-type inactivation. Expression of E325D channels in Xenopus oocytes led to an approximately 13-fold current amplitude reduction and to a 52.4 mV positive shift in the voltage dependence of activation. Moreover, the E325D mutation altered the kinetics of activation, deactivation, C-type inactivation and channel open probability. Heteromeric channels composed of two wild-type and two mutated subunits, linked as dimers, showed gating properties intermediate between channels formed from four normal or four mutated subunits. The results demonstrate that the highly conserved residues Val408 and Glu325 play a pivotal role in several gating processes of a human potassium channel, and suggest a pathogenetic mechanism by which the impairment of the delayed-rectifier function of affected neurons is related to the type and number of mutated subunits which make up the hKv1.1 channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号