首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Performance of a parallel algorithm on a parallel machine depends not only on the time complexity of the algorithm, but also on how the underlying machine supports the fundamental operations used by the algorithm. This study analyzes various mappings of image correlation algorithms in SIMD, MIMD, and mixed-mode environments. Experiments were conducted on the Intel Paragon, MasPar MP-1, nCUBE 2, and PASM prototype. The machine features considered in this study include: modes of parallelism, communication/computation ratio, network topology and implementation, SIMD CU/PE overlap, and communication/computation overlap. Performance of an implementation can be enhanced by using algorithmic techniques that match the machine features. Some algorithmic techniques discussed here are additional communication versus redundant computation, data block transfers, and communication/computation overlap. The results presented are applicable to a large class of image processing tasks. Case studies, such as the one presented here, are a necessary step in developing software tools for mapping an application task onto a single parallel machine and for mapping the subtasks of an application task, or a set of independent application tasks, onto a heterogeneous suite of parallel machines.  相似文献   

2.
Efficient parallel algorithms developed on hypercube SIMD (single-instruction multiple data-stream) machines for image template matching are presented. Most of these parallel algorithms are asymptotically optimal in their time complexities. These results improve the known bounds in the literature  相似文献   

3.
We present new methods for load balancing of unstructured tree computations on large-scale SIMD machines, and analyze the scalability of these and other existing schemes. An efficient formulation of tree search on an SIMD machine consists of two major components: a triggering mechanism, which determines when the search space redistribution must occur to balance the search space over processors, and a scheme to redistribute the search space. We have devised a new redistribution mechanism and a new triggering mechanism. Either of these can be used in conjunction with triggering and redistribution mechanisms developed by other researchers. We analyze the scalability of these mechanisms and verify the results experimentally. The analysis and experiments show that our new load-balancing methods are highly scalable on SIMD architectures. Their scalability is shown to he no worse than that of the best load-balancing schemes on MIMD architectures. We verify our theoretical results by implementing the 15-puzzle problem on a CM-2 SIMD parallel computer  相似文献   

4.
Parallel algorithms, based on a distributed memory machine model, for an exhaustive search technique for motion vector estimation in video compression are being designed and evaluated. Results from the execution on a 16,384 processor MasPar MP-1 (an SIMD machine), a 140 node Intel Paragon XP/S and a 16 node IBM SP2 (two M IMD machines), and the 16 processor PASM prototype (a partitionable SIMD/MIMD mixed-mode machine) are presented. The trade-offs of using different modes of parallelism (SIMD, SPMD, and mixed-mode) and different data partitioning schemes (the rectangular and stripe subimage methods) are examined. The analytical and experimental results shown in this application study will help practitioners to predict and contrast the performance of different approaches to parallel implementation of this important video compression technique. The results presented are also applicable to a large class of image and video processing tasks. Case studies, such as the one presented here, are a necessary step in developing software tools for mapping an application task onto a single parallel machine and for mapping a set of independent application tasks, or the subtasks of a single application task, onto a heterogeneous suite of parallel machines.  相似文献   

5.
Real-time image analysis requires the use of massively parallel machines. Conventional parallel machines consist of an array of identical processors organized in either single instruction multiple data (SIMD) or multiple instruction multiple data (MIMD) configurations. Machines of this type generally only operate effectively on parts of the image analysis problem. SIMD on the low level processing and MIMD on the high level processing. In this paper we describe the Warwick Pyramid Machine, an architecture consisting of both SIMD and MIMD parts in a multiple-SIMD (MSIMD) organization which can operate effectively at all levels of the image analysis problem.  相似文献   

6.
Functionally reconfigurable general purpose parallel machines (FRPM) could be reconfigured during the operation from SIMD to MIMD mode or vice versa (first aspect) and from one interconnection network to another according to the data storing order (second aspect). General purpose machines are considered in order to obtain an arbitrary data exchange between the processing elements they are built of. A model for describing such interconnection networks is presented. A full-information exchange network in introduced which is reconfigurable in a programming way to tree-, matrix-, cube-, linear-neighbourhood and FFT-network. Some schemes for constructing SIMD/MIMD reconfigurable machines are given. The usefullness of using FRMP for image processing and pattern recognition is discussed.  相似文献   

7.
Parallel processing is an area of growing interest to the computer science and engineering communities. This paper is an introduction to some of the concepts involved in the design and use of large-scale parallel systems. Parallel machines that are classified as SIMD (synchronous) and MIMD (asynchronous) systems, composed of a large number of microprocessors, are explored. Parallel algorithms are examined, using image smoothing, recursive doubling and contour tracing as examples. Single stage and multistage networks are discussed. The single stage Cube, PM21, Four Nearest Neighbor and Shuffle-Exchange networks are presented, and the multistage Cube network is described. Case studies of three microprocessor-based systems are given as examples of parallel machine designs, specifically the MPP SIMD machine, the Ultracomputer MIMD system, and the PASM SIMD/MIMD machine.  相似文献   

8.
In this paper we introduce a new subclass of single instruction steam/multiple data stream (SIMD) machines, referred to as a simple SIMD, then consider an implementation of a class of simple SIMD parallel algorithms onto systolic arrays, which have been considered as one candidate for VLSI-based cellular computers. The class of simple SIMD algorithms is so large that it includes many conventional SIMD algorithms, such as sorting, image processing, and graph algorithms. We develop several time-efficient algorithms for the simulations of simple SIMD machines, which have global data communications, by systolic arrays with only local data communications. The systolic simulation theorems enable us to use many conventional SIMD algorithms on the systolic arrays with little loss of time efficiency.  相似文献   

9.
Features of an explicitly parallel programming language targeted for reconfigurable parallel processing systems, where the machine's N processing elements (PEs) are capable of operating in both the SIMD and SPMD modes of parallelism, are described. The SPMD (single program-multiple data) mode of parallelism is a subset of the MIMD mode where all processors execute the same program. By providing all aspects of the language with an SIMD mode version and an SPMD mode version that are syntactically and semantically equivalent, the language facilitates experimentation with and exploitation of hybrid SIMD/SPMD machines. Language constructs (and their implementations) for data management, data-dependent control-flow, and PE-address-dependent control-flow are presented. These constructs are based on experience gained from programming a parallel machine prototype and are being incorporated into a compiler under development. Much of the research presented is applicable to general SIMD machines and MIMD machines  相似文献   

10.
This paper examines measures for evaluating the performance of algorithms for single instruction stream–multiple data stream (SIMD) machines. The SIMD mode of parallelism involves using a large number of processors synchronized together. All processors execute the same instruction at the same time; however, each processor operates on a different data item. The complexity of parallel algorithms is, in general, a function of the machine size (number of processors), problem size, and type of interconnection network used to provide communications among the processors. Measures which quantify the effect of changing the machine-size/problem-size/network-type relationships are therefore needed. A number of such measures are presented and are applied to an example SIMD algorithm from the image processing problem domain. The measures discussed and compared include execution time, speed, parallel efficiency, overhead ratio, processor utilization, redundancy, cost effectiveness, speed-up of the parallel algorithm over the corresponding serial algorithm, and an additive measure called "sprice" which assigns a weighted value to computations and processors.  相似文献   

11.
提出了一种面向SIMD机器的全局数据自动分割算法,该算法能处理多个非紧嵌折循环嵌套,并且数组下标存取为循环变量的线性式,首先通过数据与迭代映射抽象了计算中的通信方式,然事提出识别规则模式通信模式的形式比条件,接着建立包含对准信息和相应通信开销的数据迭代图,并在数据迭代图的基础上提出了一个启发式算法来计算较优的数据分布和迭代分布,以优化处理单元之间的通信开销,通过发析多个循环嵌套所涉及的多个数组映和  相似文献   

12.
Search of discrete spaces is important in combinatorial optimization. Such problems arise in artificial intelligence, computer vision, operations research, and other areas. For realistic problems, the search spaces to be processed are usually huge, necessitating long computation times, pruning heuristics, or massively parallel processing. We present an algorithm that reduces the computation time for graph matching by employing both branch-and-bound pruning of the search tree and massively-parallel search of the as-yet-unpruned portions of the space. Most research on parallel search has assumed that a multiple-instruction-stream/multiple-data-stream (MIMD) parallel computer is available. Since massively parallel stream (SIMD) computers are much less expensive than MIMD systems with equal numbers of processors, the question arises as to whether SIMD systems can efficiently handle state-space search problems. We demonstrate that the answer is yes, and in particular, that graph matching has a natural and efficient implementation on SIMD machines  相似文献   

13.
This paper describes changes made to a previous implementation of an N-body tree code developed for a fine-grained, SIMD computer architecture. These changes include (1) switching from a balanced binary tree to a balanced oct tree, (2) addition of quadrupole corrections, and (3) having the particles search the tree in groups rather than individually. An algorithm for limiting errors is also discussed. In aggregate, these changes have led to a performance increase of over a factor of 10 compared to the previous code. For problems several times larger than the processor array, the code now achieves performance levels of ∼ 1 Gflop on the Maspar MP-2 or roughly 20% of the quoted peak performance of this machine. This percentage is competitive with other parallel implementations of tree codes on MIMD architectures. This is significant, considering the low relative cost of SIMD architectures.  相似文献   

14.
The performance of conjugate gradient (CG) algorithms for the solution of the system of linear equations that results from the finite-differencing of the neutron diffusion equation was analyzed on SIMD, MIMD, and mixed-mode parallel machines. A block preconditioner based on the incomplete Cholesky factorization was used to accelerate the conjugate gradient search. The issues involved in mapping both the unpreconditioned and preconditioned conjugate gradient algorithms onto the mixed-mode PASM prototype, the SIMD MasPar MP-1, and the MIMD Intel Paragon XP/S are discussed. On PASM , the mixed-mode implementation outperformed either SIMD or MIMD alone. Theoretical performance predictions were analyzed and compared with the experimental results on the MasPar MP-1 and the Paragon XP/S. Other issues addressed include the impact on execution time of the number of processors used, the effect of the interprocessor communication network on performance, and the relationship of the number of processors to the quality of the preconditioning. Applications studies such as this are necessary in the development of software tools for mapping algorithms onto either a single parallel machine or a heterogeneous suite of parallel machines.  相似文献   

15.
This paper describes an object recognition algorithm both on a sequential machine and on a single instruction multiple data (SIMD) parallel processor such as the MIT connection machine. The problem, in the way it is presently formulated on a sequential machine, is essentially a propagation of constraints through a tree of possibilities in an attempt to prune the tree to a small number of leaves. The tree can become excessively large, however, and so implementations on massively parallel machines are sought in order to speed up the problem. Two fast parallel algorithms are described here, a static algorithm and a dynamic algorithm. The static algorithm reformulates the problem by assigning every leaf in the completely expanded unpruned tree to a separate processor in the connection machine. Then pruning is done in nearly constant time by broadcasting constraints to the entire SIMD array. This parallel version is shown to run three to four orders of magnitude faster than the sequential version. For large recognition problems which would exceed the capacity of the machine, a dynamic algorithm is described which performs a series of loading and pruning steps, dynamically allocating and deallocating processors through the use of the connection machine's global router communications mechanism.  相似文献   

16.
The AIS-5000 parallel processor   总被引:1,自引:0,他引:1  
The AIS-5000 is a commercially available massively parallel processor which was designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. The overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O (input/output) pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is also presented. Performance benchmarks are given for certain simple and complex functions  相似文献   

17.
一种改进的嵌入式SIMD协处理器设计   总被引:1,自引:0,他引:1  
论文介绍的SIMD协处理器是用于低层图像理解的16位定点嵌入式阵列处理器。该协处理器采用load/store体系结构,并且除SIMD固有的数据并行性外,还具有三级流水和三组指令并发执行的并行性。三组指令并发执行使数据交换操作和其它类型操作并发执行,从而实现了数据交换操作的隐含执行,大大减少了通信和I/O操作的开销。  相似文献   

18.
数字图像几何变换的数据并行方法研究   总被引:2,自引:0,他引:2  
张发存  王馨梅  张毅坤 《计算机工程》2005,31(22):159-161,196
针对SIMD计算机上的数字图像的几何变换问题,提出了一个新颖的基于阵列平移的数据并行实现方法。在此基础上,给出了数字图像几何变换的数据并行实现算法,并详细分析和讨论了算法的复杂性以及精度要求。  相似文献   

19.
A massively parallel fine-grained SIMD (single-instruction multi-data-stream) computer for machine vision computations is described. The architecture features a polymorphic-torus network which inserts an individually controllable switch into every node of the two-dimensional torus such that the network is dynamically reconfigurable to match the algorithm. Reconfiguration is accomplished by circuit switching and is achieved at fine-grained level. Using both the processor coordinate in the torus and the data for reconfiguration, the polymorphic-torus achieves solution time that is superior or equivalent to that of popular vision architectures such as mesh, tree, pyramid and hypercube for many vision algorithms discussed. Implementation of the architecture is given to illustrate its VLSI efficiency  相似文献   

20.
In order to program SIMD (single instruction stream-multiple data stream) parallel machines used for tasks such as speech and image processing, a language with explicit parallel constructs is often desirable. The language Ada, developed by the Department of Defense, is used here as a basis for such a language. Extensions of Ada, which allow the user to specify such operations as interprocessor communications and activation of processors, are proposed. These features are demonstrated by showing their use in a common speech processing algorithm, the parallel FFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号