首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we discuss the composition effect of 240 nm and 1.56 μm-silica particles on strength and fracture toughness by examining two parameters, fragility and glass transition temperature, that were derived from the thermo-viscoelasticity measurements. Experimental results showed that the composites had a lower fragility with higher strength and fracture toughness as the content of nanoparticles was increased regardless of glass transition temperature. The improvement in mechanical properties from adding nanoparticles was definitely explained by the fragility represented the heterogeneity in polymer matrix, and this was related to the interaction between particles and matrix. The fragility was found to be an effective parameter for evaluating strength and fracture toughness of epoxy composite containing a bidispersion of nano and micron-silica particles.  相似文献   

2.
Toughening of fiber-reinforced epoxy composites while maintaining other mechanical properties represents a significant challenge. This paper presents an approach of enhancing the toughness of a DGEBA/mPDA-based carbon fiber-reinforced epoxy composite, without significantly reducing the static-mechanical properties such as flexural properties and glass transition temperature. The impact of combining an UV-ozone fiber surface treatment with an aromatic and aliphatic epoxy fiber sizing on composite toughness is investigated. Carbon fiber-epoxy adhesion was increased as measured by the single fiber interfacial shear test. The Mode I composite fracture toughness was enhanced by 23% for the UV-ozone fiber surface treatment alone. With the addition of an aromatic and aliphatic fiber sizing, the composite fracture toughness was further increased to 50% and 84% respectively over the as-received, unsized fiber. The increased fiber/matrix adhesion also improved the transverse flexural strength.  相似文献   

3.
Carbon nanotubes (CNTs) were integrated in glass fibres epoxy composites by either including CNTs in the fibre sizing formulation, in the matrix, or both. The effects of such controlled placement of CNTs on the thermophysical properties (glass transition temperature and coefficient of thermal expansion) and the Mode I interlaminar fracture toughness of the composites were studied. The present method of CNT-sizing of the glass fibres produces an increase of almost +10% in the glass transition temperature and a significant reduction of ?31% in the coefficient of thermal expansion of the composites. Additionally, the presence of CNTs in the sizing resulted in an increased resistance of crack initiation fracture toughness by +10%, but a lowered crack propagation toughness of ?53%. Similar trends were observed for both instances when CNTs were introduced only in the matrix and in combination of both matrix and sizing.  相似文献   

4.
An innovative scheme to prepare Prestressed double network (PDN) epoxies is presented using a judicious combination of tetrafunctional curatives that have similar molecular weights but different reaction kinetics. A diglycidyl ether of bisphenol A epoxy monomer was reacted stoichiometrically and sequentially with various molar ratios of an aliphatic polyetheramine curing agent and an aromatic curing agent. Deformation was imposed on the partially cured resins after the formation of the first network, and postcuring was conducted at 50% compressive strain. Physical properties of the resulting PDN epoxies were examined using thermomechanical analysis, dynamic mechanical analysis, uniaxial tensile test, and plane-strain fracture toughness test. The application of prestress resulted in no changes in glass transition temperature, coefficient of linear thermal expansion, and Young’s modulus. However, a marked increase in fracture toughness is observed, accompanied by strong birefringence and visible roughness on the fracture surface.  相似文献   

5.
The present study investigated the effect of nanoclay additives on the mechanical properties of diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The resin was cured with diethyltoluene diamine (DETDA) hardener and four material variations produced through the addition of four types of nanoclays, respectively. The nanocomposites were prepared by the in situ polymerisation method with the aid of mechanical shearing. The properties of the nanocomposites investigated included tensile modulus, tensile strength, tensile strain and fracture toughness (KIC). It was observed that while the addition of nanoclay significantly increased the elastic modulus and fracture toughness of DGEBA epoxy resin, it also significantly reduced the failure strength and failure strain with increasing nanoclay level. Possible mechanisms for the improvement and degradation of these properties of the epoxy–clay nanocomposite materials are discussed.  相似文献   

6.
含萘和脂环烃结构单元环氧树脂的固化反应及性质   总被引:1,自引:0,他引:1  
用动态差示扫描量热(DSC)方法研究了一种分子骨架中含有萘基和脂环基结构的环氧树脂的固化反应行为,其固化反应活性较双酚A二缩水甘油醚(DGEBA)。以动态力学热分析(DMTA)、热重分析(TGA)热机械分析(TMA)对所得交联聚合物的物理性质进行了评价。与DGEBA相比。文中所介绍的环氧树脂固化物具有较高的玻璃化转变温度(Tg)。较好的热稳定性,较低的热膨胀系数、介电常数和吸湿性。这些良好的性能有可能使其在印刷线路板和电子封装料方面获得应用。  相似文献   

7.
The mechanical properties of polymethyl methacrylate and copolymers formed with both ethyl methacrylate and butyl methacrylate were investigated. Six polymers were produced by bulk polymerization, measured for molecular weight and glass transition temperature, T g and assessed for modulus of elasticity and fracture toughness. Increasing the concentration of ethyl methacrylate or butyl methacrylate resulted in a linear decrease in the glass transition temperature, modulus of elasticity, and fracture toughness. A comparison of testing environments revealed that the modulus of elasticity was reduced when conditioned and tested in water at 37 °C compared to ambient laboratory conditions for all polymers. Similar comparisons of the fracture toughness showed an increase for testing in water at 37 °C; however, this was not significant for the lower T g compositions. Both modulus of elasticity and fracture toughness were strongly correlated with the glass transition temperature and composition.  相似文献   

8.
The attainment of both high toughness and superior electrical conductivity of epoxy composites is a crucial requirement in some engineering applications. Herein, we developed a strategy to improve these performances of epoxy by combining the multi-wall carbon nanotubes (MWCNTs) and spherical particles. Two different types of spherical particles i.e. soft submicron-rubber and rigid nano-silica particles were chosen to modify the epoxy/MWCNT composites. Compared with the binary composites with single-phase particles, the ternary composites with MWCNTs and spherical particles offer a good balance in glass transition temperature, electrical conductivity, stiffness and strength, as well as fracture toughness, exhibiting capacities in tailoring the electrical and mechanical properties of epoxy composites. Based on the fracture surface analysis, the complicated interactions between multiscale particles and the relative toughening mechanisms were evaluated to explain the enhancement in fracture toughness of the ternary composites.  相似文献   

9.
The objective of the present study was to determine whether the ductility and toughenability of a highly cross-linked epoxy resin, which has a high glass transition temperature, T g, can be enhanced by the incorporation of a ductile thermoplastic resin. Diglycidyl ether of bisphenol-A (DGEBA) cured by diamino diphenyl sulphone (DDS) was used as the base resin. Polyethersulphone (PES) was used as the thermoplastic modifier. Fracture toughness and shear ductility tests were performed to characterize the materials. The fracture toughness of the DDS-cured epoxy was not enhanced by simply adding PES. However, in the presence of rubber particles as a third component, the toughness of the PES–rubber-modified epoxy was found to improve with increasing PES content. The toughening mechanisms were determined to be rubber cavitation, followed by plastic deformation of the matrix resin. It was also determined, through uniaxial compression tests, that the shear ductility of the DDS-cured epoxy was enhanced by the incorporation of PES. These results imply that the intrinsic ductility, which had been enhanced by the PES addition, was only activated under the stress state change due to the cavitation of the rubber particles. The availability of increasing matrix ductility seems to be responsible for the increase in toughness. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
To study the toughening mechanisms of liquid rubber (LR) and core-shell rubber (CSR) in bulk epoxy and composite laminate, experimental and numerical investigations were carried out on compact tension (CT) and double-cantilever-beam (DCB) specimens under mode-I loading. The matrix materials were pure epoxy (DGEBA), 15% LR (CTBN) and 15% CSR modified epoxies. Experimental results and numerical analyses showed that both liquid rubber (LR) and core-shell rubber (CSR) could improve significantly the fracture toughness of pure epoxy (DGEBA). However, the high toughness of these toughened epoxies could not be completely transferred to the interlaminar fracture toughness of the unidirectional carbon fibre reinforced laminate. The main toughening mechanism of CSR in bulk epoxy was the extensive particle cavitation, which greatly released the crack-tip triaxiality and promoted matrix shear plasticity. The poor toughness behavior of CSR in the carbon fibre laminate was thought to be caused by the high constraint imposed by the stiff fibre layers. No particle cavitation had been observed in LR modified epoxy and the main toughening mechanism was merely the large plastic deformation near the crack-tip due to the rubber domains in the matrix which results in a lower yield strength but a higher elongation-to-break.  相似文献   

11.
Polyetherketone cardo (PEK-C) nanofibres were produced by an electrospinning technique and directly deposited on carbon fabric to improve the interlaminar fracture toughness of carbon/epoxy composites. The influences of nanofibre diameter and interlayer thickness on the Mode I delamination fracture toughness, flexure property and thermal mechanical properties of the resultant composites were examined. Considerably enhanced interlaminar fracture toughness has been achieved by interleaving PEK-C nanofibres with the weight loading as low as 0.4% (based on weight of the composite). Finer nanofibres result in more stable crack propagation and better mechanical performance under flexure loading. Composites modified by finer nanofibres maintained the glass transition temperature (Tg) of the cured resin. Increasing nanofibre interlayer thickness improved the fracture toughness but compromised the flexure performance. The Tg of the cured resin deteriorated after the thickness increased to a certain extent.  相似文献   

12.
A phenyl-trifluoromethyl (-Ph-CF3) groups modified epoxy resin, diglycidylether of bisphenol A-fluorine (DGEBA-F), was synthesized and the physical properties, such as curing behaviors, thermal stabilities, and dielectric constant of the DGEBA-F/4,4′-diaminodiphenyl methane (DDM) system were investigated and compared with commercial DGEBA/DDM system. For the mechanical behaviors of the specimens, the fracture toughness and impact tests were performed, and their fractured surfaces were examined by using a scanning electron microscope (SEM). The dielectric constant values of the DGEBA-F/DDM system were lower than those of the DGEBA/DDM system and the mechanical properties of the casting DGEBA-F specimens were higher than those of the DGEBA specimens. This was probably due to the fact that the introduction of the -Ph-CF3 groups into the side chain of the epoxy resin resulted in improving the electrical properties and toughness of the cured DGEBA-F epoxy resin.  相似文献   

13.
本文工作研究了复合材料用环氧树脂的韧化。该体系由无规羧基丁腈橡胶,双酚A型环氧树脂,2-乙基-4-甲基咪唑组成。无规羧基丁腈橡胶对环氧树脂的增韧效果以及用增韧环氧树脂作基体材料对复合材料性能的影响已作报导[1,2,3]。本文报导无规羧基丁腈橡胶增韧环氧浇注体在应力下的形变特性及裂缝扩展特征。主要阐述橡胶增韧环氧浇注体受拉应力作用时,产生的两个形变过程——裂纹化与剪切变形,并根据双悬臂梁劈裂试件的断裂面形态,讨论了裂缝亚临界扩展区。  相似文献   

14.
反应性聚碳酸酯/环氧树脂体系的反应活性与性能研究   总被引:6,自引:0,他引:6  
采用DSC和TGA等方法研究了反应性聚碳酸酯/环氧树脂体系的固化特性,热性能和力学性能。结果表明,α-PC的加入,增加了体系的反应活性,固化体系的相容性也良好,形成一个均相网络结构。固化体系在350℃无任何分解,具有较好的耐热性,且体系的韧性也有所提高。  相似文献   

15.
A transparent organic-inorganic epoxy/silica hybrid material was prepared by epoxy resin, functionalized-epoxy resin, which was partially functionalized by 3-aminopropyl triethoxylsilane(APTES), and highly reactive polysilcic acid (PSA), which was prepared through hydrolysis and condensation of metasilicate salt. The properties of hybrid materials such as impact strength, tensile strength, glass transition temperature (Tg), thermogravimetric temperature (TGA), and thermal effect of the hybrid materials were studied. The size of PSA particles in THF measured by dynamic light scattering technique, ranged from 10–28 nm. The results of experiment indicated that modified epoxy resin possed better roughness than that of the pure epoxy resin. The structure of the hybrid materials was characterized by FT-IR spectroscopy and 29SiNMR spectroscopy.  相似文献   

16.
The relationship between the chemical structure and physical properties of ultra-violet cured isophorone diisocyanate (IPDI) and toluene diisocyanate (TDI) based urethane acrylates were studied. The two systems were prepared with varying soft-segment molecular weight and cross-linker content. Dynamic mechanical test results show one-phase or two-phase materials may be obtained depending on the soft-segment molecular weight. With increasing soft-segment molecular weight, the polyol glass transition shifts to lower temperatures. Increasing the cross-linker content using either N-vinylpyrrolidone (NVP) or polyethyleneglycol diacrylate (PEGDA) causes an increase in Young's modulus and ultimate tensile strength. Cross-linking with NVP causes an increase in toughness in the two-phase materials and shifts the high-temperature glass transition peak to higher temperatures. In contrast, an increase in PEGDA content does not improve the toughness of the two-phase materials or affect the position of the high-temperature glass transition peak. Comparison of the tensile properties of the TDI- and IPDI-based systems shows no significant differences.  相似文献   

17.
采用热熔法制备环氧树脂(EP)/氰酸酯树脂(CE)/酚酞基聚醚酮(PEK-C)半互穿网络聚合物。利用三点弯曲法测定了固化物的力学性能,通过动态力学分析(DMA)研究了固化物玻璃化转变温度(Tg)及储存模量变化规律;用扫描电镜(SEM)对断面进行了观察。结果表明,在Tg和弯曲性能基本保持不变的情况下,PEK-C能有效地改善固化物的韧性。当PEK-C的加入量为15%(质量分数,下同)时,断裂韧性KIC和GIC值可分别提高20%和50%,归功于此时固化物形成双连续相结构。但是随着PEK-C含量的增加,固化物初始分解温度略微下降,这可能与交联密度的少量降低有关。  相似文献   

18.
Vinyl ester (VE) resins with a bimodal distribution of molecular weights were prepared via methacrylation of epoxy monomers. Bimodal VE resins and neat polymers had viscosities and mechanical properties similar to that of commercial resins. E-glass composites were prepared and also found to have similar mechanical and thermo-mechanical properties relative to composites fabricated using commercial resins. However, the fracture toughness of the bimodal resins was superior to that of the commercial resins partially as a result of increased molecular relaxations that were manifested in a broader glass transition. Overall, bimodal resins allow for the use of low styrene content (33 wt%), while maintaining excellent thermal, mechanical, and fracture properties for the neat resins and composites.  相似文献   

19.
A diglycidyl ether of bisphenol-A (DGEBA) epoxy resin was modified with poly(ether ether ketone) with pendent methyl groups (PEEKM). PEEKM was synthesised from methyl hydroquinone and 4,4′-difluorobenzophenone and characterised. Blends of epoxy resin and PEEKM were prepared by melt blending. The blends were transparent in the uncured state and gave single composition dependent T g. The T g-composition behaviour of the uncured blends has been studied using Gordon–Taylor, Kelley–Bueche and Fox equations. The scanning electron micrographs of extracted fracture surfaces revealed that reaction induced phase separation occurred in the blends. Cocontinuous morphology was obtained in blends containing 15 phr PEEKM. Two glass transition peaks corresponding to epoxy rich and thermoplastic rich phases were observed in the dynamic mechanical spectrum of the blends. The crosslink density of the blends calculated from dynamic mechanical analysis was less than that of unmodified epoxy resin. The tensile strength, flexural strength and modulus were comparable to that of the unmodified epoxy resin. It was found from fracture toughness measurements that PEEKM is an effective toughener for DDS cured epoxy resin. Fifteen phr PEEKM having cocontinuous morphology exhibited maximum increase in fracture toughness. The increase in fracture toughness was due to crack path deflection, crack pinning, crack bridging by dispersed PEEKM and local plastic deformation of the matrix. The exceptional increase in fracture toughness of 15 phr blend was attributed to the cocontinuous morphology of the blend. Finally it was observed that the thermal stability of epoxy resin was not affected by the addition of PEEKM.  相似文献   

20.
《Composites Part B》2013,45(1):558-564
Organic–inorganic hybrid materials were synthesized by the reaction between a classical epoxy resin (Diglycidylether of bisphenol A-DGEBA) and some polyhedral oligomeric silsesquioxane (POSS) compounds which include different organic radicals. The effect of POSS type and concentration on the properties of hybrids was studied using different methods like Raman Spectroscopy, Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Thermogravimetrical Analysis (TGA). The presence of POSS substituted with eight epoxy-based substituents leads to an increase of DGEBA reactivity in the first stage of the reaction. The DMA results showed that the glass transition temperature of hybrid materials with POSS decreases even at high POSS concentration and regardless of POSS type because the systems do not reach a 100% conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号