共查询到17条相似文献,搜索用时 125 毫秒
1.
2.
3.
线性预测HMM(Linear Prediction HMM,LPHMM)并没有象传统HMM那样引入状态输出独立同分布假设,但实用中识别性能并不佳.通过分析两种HMM的各自优劣,本文提出了一种新的语音识别的混合模型,将语音静态特性(基于传统HMM)和动态特性(基于LPHMM)分别描述又有机结合在一起,更为精确地刻划了真实的语音现象,同时又继承使系统的实现改动很小和较小的计算量.汉语大词汇量非特定人连续语音识别的实验表明,混合模型的识别性能显著好于LPHMM和传统HMM.理论上,本文还给出了LPHMM的一组闭式参数重估公式. 相似文献
4.
提出了一种结合韵律信息的高性能汉语连续数字语音识别算法,该识别算法基于CHMM(连续隐马尔可夫模型),采用MFCC(MEL频率倒谱系数)为主要语音特征参数,结合韵律信息进行连续数字精确分割,能够有效区分易混数字。算法采用两级识别框架来提高语音识别率,其中,第1级对连续数字分割,在此基础上进行数字语音识别,输出各候选结果,第2级在候选结果中确定易混数字对,并运用韵律信息进一步选择正确结果。实验表明,最终汉语连续数字语音识别率有很大提高。 相似文献
5.
一种适于非特定人语音识别的并行隐马尔可夫模型 总被引:2,自引:0,他引:2
为了适合非特定人语音识别,提出了一种由多条并行马尔可夫链组成的并行HMM(Parallel Hidden Markov Model,PHMM),从而融合了基于分类的语音识别中为各个类别建立的模板,提高了识别性能,各条链之间允许有交叉,使得融合的多模板之间存在状态共享,同时PHMM可以在训练过程中自动完成聚类,且测试语音的输出结果来自所有类别,无需聚类分析和类别判断,这些都减少了存储量和计算量,汉语非特定人孤立数字的识别实验表明,PHMM较之传统CHMM使识别性能及噪声鲁棒性都得到了改善。 相似文献
6.
7.
8.
9.
神经网络与HMM构成的混合网络在语音识别中应用的研究 总被引:7,自引:0,他引:7
隐马尔可夫模型(HMM)技术是语音识别中应用较为成功的算法,但它的缺点影响了其精度、速度、硬件实现和推广应用。神经网络(NN)具有并行性、强的分类能力和易于硬件实现等优点。将NN与HMM相结合构成混合网络,能克服HMM与NN的缺点,保留双方的优点。本文详细评述了目前在语音识别中应用的由HMM和NN构成的四种混合网络。通过对其结构、识别性能和特点的分析,可以看出HMM和NN构成的混合网的性能明显优于 相似文献
10.
本文针对问题一建立了基于连续隐马尔科夫模型的语音识别系统的模型。该语音识别系统包括预处理,特征提取以及声学模型三个部分。问题二要求以一个实际的例子则对问题一中建立的模型进行验证。我们选择了话费查询这个功能进行测试。待测语音信号依次经过预处理、特征提取、训练与识别。 相似文献
11.
本文简要讨论了在基于HMM的连续语音识别系统中怎样选取基本语音单元的问题,介绍了在欧洲Polyglot课题下在法国LINSI-CNRS建立的基于上下文无关音素HMM。然后,本文详细给出了利用左或右上下文相关音素HMM,作者对上述系统改进后进行的连续语音识别,有用美国语音库DARPA-RM1,在不考虑句法信息时,我们获得了连续时词识别率大约3-10个百分点的明显提高。实验是在法国LIMSI-CNRS 相似文献
12.
13.
正反向隐马尔可夫模型及其在连续语音识别中的应用 总被引:1,自引:0,他引:1
本文针对语音信号中客观存在的正、反向依赖特性,明确提出了用条件概率的概念来定量表述语音信号的这种正、反向的马尔可大依赖关系,提出了描述语音信号这种正反向依赖关系的正反向隐马尔可夫模型(HMM),并用实验证明了仅仅利用语音反向依赖关系语音识别同样也能获得相当可观的识别性能。接着,本文针对孤立字和连续语音两种不同的识别任务,研究了在语音识别中同时利用这两种依赖信息的方法,并提出了一种连续语音识别中的新的搜索算法──正反向分半混合搜索。这种方法利用基于正向HMM的正向Viterbi搜索和基于反向HMM的反向Viterbi搜索的中间结果来有效地结合正反向依赖信息,实验证明正反向分半混合搜索方法确实一致地优于单用任何一种依赖信息的单向搜索识别方法。 相似文献
14.
汉语大词汇量连续语音识别系统研究进展 总被引:34,自引:3,他引:34
本文综述了近年来大词汇量连续语音识别技术进步和发展,描述了大词汇量连续汉语语音识别系统的设计方法.对语音识别系统中的一些关键技术和原理进行了详细地分析和讨论,并对语音识别技术进一步发展中存在的问题和近年语音识别研究发展动向进行了讨论. 相似文献
15.
针对医学影像中小结节容易被漏诊的问题,提出了基于胸部CT图像的肺癌计算机辅助诊断新方法.首先从胸部CT图像分割出关心区域(ROI);然后提取ROI的特征;其次采用RS理论选择有效特征;最后基于这些有效特征建立面向不同需求的肺癌识别模型.即如果需要快速诊断,则利用SONN建立肺癌识别模型;如果需要进行准确诊断,则利用SPAM建立肺癌识别模型和非肺癌识别模型,并根据待识别样本与模型的相似度判断所属类别.但是当相似度较小时,则利用HMM进一步识别.通过实验验证了该方法的有效性. 相似文献
16.
为了提高语音识别效率及对环境的依赖性,文章对语音识别算法部分和硬件部分做了分析与改进,采用ARMS3C2410微处理器作为主控制模块,采用UDA1314TS音频处理芯片作为语音识别模块,利用HMM声学模型及Viterbi算法进行模式训练和识别,设计了一种连续的、小词量的语音识别系统。实验证明,该语音识别系统具有较高的识别率和一定程度的鲁棒性,实验室识别率和室外识别率分别达到95.6%,92.3%。 相似文献