首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
介绍了用数值模拟手段设计加速腔体的方法。在设计70MHz回旋加速器谐振腔的过程中,为满足回旋加速器磁铁的结构要求,对高频频率、Q值等高频参数进行了研究。在设计阶段,应用基于有限元方法的程序对高频实验进行模拟计算。回旋加速器腔体的初步设计结果将用于最终物理设计和工程设计。  相似文献   

2.
中国原子能科学研究院目前正在研制一台用于质子治疗的230 MeV超导回旋加速器。本文设计用于230 MeV超导回旋加速器的高频腔体,其采用螺旋结构,由4个腔体组成,高频系统采用二次谐波加速,高频腔体工作频率约71.25 MHz。4个半波长的电容加载型谐振腔工作于Push-Pull模式,其中两个腔体在中心平面直连,另外两个腔体在中心区下方使用过桥连接,两组腔体之间存在电容耦合,相差180°。在腔体的设计过程中,采用计算机对4腔体进行联合仿真,经优化后,腔体加速电压分布在中心区部分的为75 kV,大半径部分的提升至110 kV,腔体的无载品质因数仿真结果约8 800。为保证腔体的高频性能,腔体主体材料采用无氧铜材料,其加工难度在于上、下外壳需分别焊接成一个整体,同时要控制其形变量。目前,腔体已完成加工,单个腔体的无载品质因数的测试表明,腔体的无载品质因数均好于7 000,满足要求。  相似文献   

3.
强流回旋加速器综合实验装置是中国原子能科学研究院串列加速器升级工程的重要设计验证项目,设计能量为10MeV,它包括1台小型回旋加速器的全套设备,具备其全部功能。它作为一综合试验平台,对100MeV强流回旋加速器的理论设计进行工程可行性验证,同时用于强流回旋加速器的新型工艺研究和设备检测。  相似文献   

4.
中国原子能科学研究院目前正在研制一台用于质子治疗的230 MeV超导回旋加速器。本文设计用于230 MeV超导回旋加速器的高频腔体,其采用螺旋结构,由4个腔体组成,高频系统采用二次谐波加速,高频腔体工作频率约71.25 MHz。4个半波长的电容加载型谐振腔工作于Push-Pull模式,其中两个腔体在中心平面直连,另外两个腔体在中心区下方使用过桥连接,两组腔体之间存在电容耦合,相差180°。在腔体的设计过程中,采用计算机对4腔体进行联合仿真,经优化后,腔体加速电压分布在中心区部分的为75 kV,大半径部分的提升至110 kV,腔体的无载品质因数仿真结果约8 800。为保证腔体的高频性能,腔体主体材料采用无氧铜材料,其加工难度在于上、下外壳需分别焊接成一个整体,同时要控制其形变量。目前,腔体已完成加工,单个腔体的无载品质因数的测试表明,腔体的无载品质因数均好于7 000,满足要求。  相似文献   

5.
在100MeV回旋加速器中,高频腔体的频率范围为43~45MHz,Dee电压分布中心区为60kV,大半径区域约为120kV。要求腔体在满足频率要求和Dee电压分布的同时,有良好的机械稳定度和较低的功率损耗。  相似文献   

6.
用基于有限元法的软件ANSYS完成了70 MHz异形回旋加速器高频腔体的初步设计,根据初步设计的结果,加工了与实际腔体尺寸1﹕1的模型。模型高频参数测量结果表明,ANSYS的计算结果是可信的。 1 内杆长度固定,不同电容片间距下的模型腔体频率测量结果与计算结果比较 内杆长度为0.544  相似文献   

7.
针对回旋加速器射频系统幅度、相位、频率、自动启动逻辑、联锁保护、在线参数修改等控制需求,设计了一种用于回旋加速器低电平系统的软硬件系统。该系统的硬件基于ZYNQ系列FPGA和高速ADC及DAC。采用数字下变频技术实现了幅度、相位和调谐控制;采用数字电路实现了腔体打火的快速检测。幅度控制精度为0.015%,相位控制精度为0.04°。该系统充分发挥了数字低电平系统的全可编程优势,通过上位机修改参数即可适用于多种回旋加速器。  相似文献   

8.
介绍了利用轫致辐射能谱测定回旋加速器高频腔体电压的原理,方法及测量结果。该测量方法的优点在于采用非接触方式量高频腔体电压,因而不改变高频腔体的谐振特性,并且不受高频频率的影响,测量的高频腔体电压准确可靠。  相似文献   

9.
高频窗是100MeV高频传输线系统的主要部件之一,放置于传输线与高频腔体的连接位置,要求既能传输大功率,有较小的功率反射,又要求高频窗能隔绝大气与高真空。根据高频窗的物理要求,采用计算机模拟的方法设计了用于100MeV回旋加速器的高频窗。  相似文献   

10.
在100MeV回旋加速器中,高频腔体的频率范围为43~45MHz,Dee电压分布中心区为60kV,大半径区域约为120kV。要求腔体在满足频率要求和Dee电压分布的同时,有良好的机械稳定度和较低的功率损耗。为充分利用磁铁谷区的空间,设计的两个腔体完全安放在两个相对的谷区中,外腔做成三角形,  相似文献   

11.
作为紧凑型强流回旋加速器CYCIAE-100,为了维持安装在相对两个谷区内的1对高频腔能够提供60kV(中心区)约120kV(引出区)的加速电压,要求馈入的功率较高,腔体水冷的难度大,因此,需要对水冷系统进行详细的设计,本文以高频腔Dee板的水冷系统的设计和优化为例进行说明。  相似文献   

12.
高频谐振腔体是100MeV强流质子回旋加速器高频系统的重要组成部分,只有保证腔体的稳定性,腔体才能为粒子加速提供高稳定度的电场能量。温度引起的热变形是阻碍腔体稳定的重要原因之一,因此,布置腔体的水冷系统十分关键,腔体的功率分布计算为水冷的布置提供依据。  相似文献   

13.
射频谐振腔体的特征参数,包括谐振频率、品质因数和并联阻抗等,对加速器的物理设计和束流调试具有重要的参考意义,是衡量射频系统性能的重要指标.其中,等效并联阻抗的准确测量,是确定加速电压的峰值与分布的有效途径,其难点在于测量方法或对局部电磁场有扰动,或信噪比较低.论文通过应用研究的方法,由二端口无源网络散射参数的定义出发,设计了先进的测量方案,采用了特殊设计的阻抗探针,获得了强流回旋加速器综合试验装置的加速电压分布.同时使用同样的方法,对100 MeV回旋加速器金属实验腔体的电压分布进行了实验研究,该结果与三维计算机仿真结果对比,相对误差小于1%.  相似文献   

14.
<正>2019年是回旋加速器研究设计中心(以下简称回旋中心)230MeV超导回旋加速器癌症治疗样机研制(以下简称230 MeV超导回旋加速器)及其关键技术研究关键之年。一年来,对230MeV超导回旋加速器进行了建设和调试工作,完成了各项工作的节点目标,为230 MeV超导回旋加速器2020年的调试奠定了良好基础。  相似文献   

15.
根据医用回旋加速器的物理要求,确定了医用回旋高频腔的具体结构设计方案。在加速电压较高、空间有限的情况下提升高频腔的品质因数,结构设计为1/2波长线的竖腔。为避免腔体在实际工作中由发热变形引起频率漂移,本次设计中采用微调环调谐结构来保证频率稳定度的要求。本文利用Microwave Studio CST程序对腔体的电磁场分布、品质因数Q_0、表面电流分布、耦合电容、微调环进行了详细的分析与仿真计算。与实际测量值进行对比,两者比较吻合,并对产生的误差进行了分析讨论。  相似文献   

16.
主磁铁举升系统是100MeV回旋加速器的重要设备之一,在100MeV回旋加速器的安装、磁场测量、真空检漏、束流调试、检修维护等过程中,举升系统具有重要作用。目前国际上的大型紧’凑型回旋加速器主要采用两种类型的举升装置,一类是采用螺旋丝杠升降装置,如加拿大TRIUMF、意大利LNS、瑞士PSI的回旋加速器等,另一类是采用液压举升装置,如比利时IBA的235MeV质子回旋加速器。CYCIAE一100的举升系统参数为:设计举升重量180t,举升高度1500mm。  相似文献   

17.
建立 2 0~ 1 0 0MeV紧凑型回旋加速器轴向注入系统实验台架 ,用以进行提高回旋加速器的注入流强与效率的实验研究。在该实验台架的物理设计与元件设计中 ,主要考虑H- 束从离子源引出后传输到回旋加速器中心区的输运线元件选用、物理参数匹配计算、物理元件设计等问题。设计对象是2 2MeV和 70MeV回旋加速器的轴向注入系统 ,并将两者的布局、元件及几何尺寸、物理参数的选取统一 ,以便于实验台架的建立 ,从而形成适应性强的强流回旋加速器轴向注入系统。整个系统只需做少量调整就可满足能量为 2 0~ 1 0 0MeV的回旋加速器注入要求。  相似文献   

18.
CYCIAE-100MeV回旋加速器非标机械结构主要包括离子源、轴向注入、中心区、高频腔体、频率自动微调、高频功率馈入、剥离靶引出、磁场调谐系统、对中线圈、径向束流探针、真空系统、相位探测系统、磁场测量系统、主线圈、束流诊断系统、束流调试靶、质子管道及传输元件、举升系统、运输安装与调节系统等。初步机械工程设计工作涉及到回旋加速器研制的各个方面,包括各系统为实现其功能所进行的结构设计、工艺设计、相关专业调研、加工方法、厂家选择、技术交流、采购、监造、分系统安装、分系统调试、验收、整体安装、整机调试、检修、运…  相似文献   

19.
加速管是加速器设计的核心部分。常规设计加速器的俘获效率只能达50%左右,1/2的电子都损失在加速管内,丢失的电子会轰击加速管管壁,产生轫致辐射、腔体发热量增加、真空变坏等许多负面影响。采用等梯度加速结构,相速沿加速管呈线性增加,调整相速变化规律及加速管腔体的尺寸参数,设计的加速管最终俘获效率提高到90%以上,同时平均加速梯度没有因此降低,加速管总长度未增加。  相似文献   

20.
10MeV强流回旋加速器的束流调试   总被引:2,自引:2,他引:0  
10MeV强流回旋加速器在中国原子能科学研究院研制成功,并取得了先进的束流指标。它是国内自主研发的首台紧凑型强流回旋加速器,具有多项技术特点。在其建造、调试过程中解决了诸多技术问题,作为一个回旋加速器综合实验装置,它不但为在建的100MeV回旋加速器提供了设计验证手段,而且也是强流回旋加速器关键部件的综合实验平台。它的建造成功,为小型回旋加速器的国产化提供了技术保证,为推广加速器在我国核医学领域的应用创造了条件。本文将重点介绍它的调试过程、解决的关键问题及调试结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号