首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以仪长管输原油渣油为原料,用连续搅拌釜反应器模拟沸腾床考察了高铁钙渣油的裂化性能和杂质脱除性能,并研究了沸腾床加氢催化剂的初期失活情况。结果表明,反应温度是影响高铁钙渣油转化率和杂质脱除率的主要因素,积炭、金属硫化物的沉积造成的催化剂孔口堵塞失活是影响高铁钙渣油沸腾床加氢工艺经济性的主要因素,铁钙含量应该作为采用沸腾床加氢工艺还是固定床加氢工艺加工高铁钙渣油的判断标准。  相似文献   

2.
以劣质渣油为原料,采用中国石油化工股份有限公司抚顺石油化工研究院和中石化洛阳工程有限公司联合开发的沸腾床加氢技术(Strong)进行单段串联渣油加氢脱金属和加氢脱硫试验,主要考察不同反应温度下,原料转化率、金属脱除率、脱硫率、残炭脱除率和生成油胶体稳定性的变化规律。结果表明:随着反应温度升高,原料的转化率、残炭脱除率、金属脱除率和脱硫率增加,生成油的胶体稳定性指数降低;优选的金属脱除温度均为410℃,反应温度相同条件下,原料中钒的脱除率远远高于镍的脱除率;当反应温度小于400℃时,加氢生成油稳定性指数大于1.43,说明加氢生成油保持稳定的胶体状态;当反应温度为400~420℃时,加氢生成油稳定性指数为1.23~1.43,说明此时加氢生成油易受其他因素影响。  相似文献   

3.
以塔河常压渣油和沙轻减压渣油为原料,在高压釜反应器中研究了其它反应条件相同时,反应温度对渣油加氢反应过程的影响。结果表明,在实验所研究的反应温度内,两种渣油的转化率、汽柴油收率、硫和氮的脱除率都随反应温度的升高而增加,且在380~400℃均会出现一个拐点,证明高温有利于渣油的加氢转化和硫、氮的脱除,但由于焦炭产率随反应温度的升高而显著增加,引起催化剂失活速度加快,故渣油加氢反应温度不宜过高。硫含量较高的沙轻减渣的转化率、汽柴油收率、硫和氮脱除率均高于塔河常渣,说明大分子含硫化合物易于分解生成小分子物质,小分子再进入催化剂微孔中进一步发生加氢反应。  相似文献   

4.
以高金属、高残炭、高沥青质的劣质渣油为原料,考察了反应温度对沸腾床渣油加氢反应性能的影响。试验结果表明:高温有利于原料重组分转化、沥青质脱除和残炭脱除;而对于金属和硫等杂原子的脱除影响不显著。当反应温度达到基准+30℃时,原料的转化率达到49%,脱硫率达到67%,脱残炭率达到53%,脱镍率达到80%,脱钒率达到98%,沥青质脱除率达到85%。加氢生成油的精细结构分析表明:随着反应温度升高,加氢生成油的相对分子质量、总环数、芳香环数、芳碳率、芳香环系周边氢取代率都降低,而氢碳原子比、芳香环系的缩合度参数、烷基碳率都增加。  相似文献   

5.
渣油临氢热裂化反应性能研究   总被引:1,自引:0,他引:1  
在小型连续装置上进行热裂化试验,探索渣油在高压临氢条件下的热裂化反应规律。采用单反一次通过的操作方式,选择(镍+钒)质量分数高达232.86 μg/g、残炭为19.67%的高金属、高残炭渣油为原料,考察其在不同反应温度和空速下的转化率、残炭脱除率、金属脱除率和脱硫率的变化规律。结果表明:在考察的操作条件区间内,当其它条件一定时,随着反应温度的升高,渣油转化率和脱硫率增加,生成油的残炭和金属含量降低;而随着反应空速增加,渣油转化率和杂质脱除率降低。说明高温、低空速有利于渣油转化和原料中杂质的脱除。在反应温度400~420 ℃、空速1.0~1.5 h-1的操作区间,渣油转化和杂质脱除较为显著。在反应温度420 ℃、空速1.0 h-1时,渣油转化率接近60%,脱硫率为33%;热裂化生成油的残炭为11%,金属镍和钒的质量分数分别为28 μg/g和72 μg/g。  相似文献   

6.
对沸腾床加氢-焦化组合工艺制备高品质石油焦的工艺路线进行研究,探究沸腾床未转化油(UCO)的焦化规律.结果表明:渣油沸腾床加氢反应过程中,提高温度或降低空速有利于渣油转化率和杂质脱除率提高;同样的操作区间内,渣油转化率的变化明显大于杂质脱除率;随着渣油转化率增加,UCO硫含量先降低再升高.UCO焦化过程中原料中60%左...  相似文献   

7.
以高硫劣质渣油为原料,用自行研发的沸腾床渣油加氢微球催化剂,在STRONG沸腾床试验装置上进行了加氢脱金属试验,考察了温度、空速和氢油体积比对渣油脱金属率的影响。结果表明:在沸腾床全混流的状态下,在试验所考察的温度范围内,渣油加氢脱金属率随着反应温度的增加呈上升趋势,最适合的反应温度为380 ℃;在试验所考察的空速范围内,原料的脱金属率随着空速的增加呈下降趋势,且下降趋势明显,最适合的空速为1.6 h-1;在试验所考察的氢油体积比范围内,脱金属率先随氢油体积比的增大而提高,达到一个最佳反应区域(氢油体积比450~550)后,又随氢油体积比的增大而降低。  相似文献   

8.
以5种不同的渣油为原料,从催化剂开发、催化剂级配、工艺条件优化、原料适应性考察等角度深入研究并开发了渣油深度加氢技术。结果表明:新开发的渣油深度加氢系列催化剂活性显著高于常规催化剂;反应温度是影响加氢深度最关键的因素;在优化的催化剂级配方案和工艺条件下,渣油深度加氢技术不仅可以显著提高原料中杂原子的脱除率,提高生成油的氢含量,还可以实现多烃类定向转化产化学品;高硫、低氮常压渣油更适宜采用渣油深度加氢技术生产优质催化裂解原料。  相似文献   

9.
以中东高硫渣油为原料,从催化剂开发、工艺条件优化、催化剂级配及活性稳定性考察等角度深入研究并开发了渣油选择性加氢脱硫技术。结果表明:新开发的渣油选择性加氢脱硫催化剂(包括专用脱金属剂和专用脱硫剂)的加氢脱硫活性显著高于常规渣油加氢催化剂(包括相应的常规脱金属剂和常规脱硫剂);在加氢生成油硫含量相当的情况下,合适的氢分压、较低的体积空速、较高的氢油比以及较低的反应温度可以提高脱硫选择性;与常规渣油加氢脱硫技术相比,在脱硫率相当的情况下,新开发的渣油选择性加氢脱硫技术的反应温度低7℃,加氢生成油的残炭升高率为11.5%,加氢过程的氢耗降低率为7%~11%。  相似文献   

10.
针对仪长管输原油渣油(简称仪长渣油)的性质特点,开发了新型渣油加氢降残炭催化剂,并考察了加氢工艺条件对仪长渣油加氢处理反应的影响。通过选用镍钼型活性金属体系,改进载体的制备方法、浸渍工艺过程及添加助剂等开发了新型渣油加氢降残炭催化剂,使用该催化剂的级配体系具有更强的加氢饱和活性及杂原子脱除活性。在相同的操作条件下,与现工业装置应用的催化剂级配体系相比,使用新型加氢降残炭催化剂的级配体系可以使仪长渣油的残炭降低率提高3.3百分点、加氢脱氮率提高7.9百分点,有效提升仪长渣油的加氢生成油品质。在渣油加氢常规操作范围内,通过提高反应温度和氢分压、降低体积空速可以提高仪长渣油残炭降低率,促进加氢脱硫、加氢脱氮等反应的进行,有利于加氢生成油品质的提高。  相似文献   

11.
本文对孤岛渣油在分散型Mo系催化剂存在下的加氢裂化与临氢裂化进行了对比研究,通过裂化气体的气相色谱分析,残渣油的组成,分析初步揭示了在分散型钼系催化剂存在下渣油加氢裂化反应的机理和分散型催化剂抑制生焦的机理,结果表明,在分散型Mo系催化剂存在下,测量油加氢裂化以自由其热裂化反应为主;但加氢反应抑制了胶质-沥青质的综合反应,同时催化剂对沥青质缩聚物的吸附作用,延缓了焦炭的生成。  相似文献   

12.
针对STRONG沸腾床加氢工艺技术特点,开发了微球形沸腾床渣油和煤焦油加氢催化剂。微球形渣油加氢催化剂已成功应用于50 kt/a沸腾床渣油加氢示范装置,表现出较好的反应性能和耐磨性能,与国外领先技术水平相当。微球形煤焦油加氢催化剂具有较好的耐水性能和加氢性能,已成功应用于陕西精益化工有限公司500 kt/a煤焦油沸腾床加氢装置。针对引进的沸腾床加氢装置,开发了条形煤液化油和渣油加氢催化剂,煤液化油加氢催化剂已成功应用于中国神华鄂尔多斯煤制油公司加氢稳定性单元,表现出较好芳烃选择性加氢能力和较高的耐磨性能,总体性能优于国外技术。条形沸腾床渣油加氢催化剂具有较高的侧压强度和耐磨性能,加氢性能与国外领先技术水平相当。  相似文献   

13.
考察了沸腾床加氢过程中,渣油转化率对杂质脱除率和未转化油(UCO)性质及其分子结构的影响,并探讨了加氢过程中重油分子结构的变化规律.结果表明:渣油转化率增加,UCO中杂质(硫、氮、金属)脱除率增加,密度、残炭值、氮质量分数升高,硫质量分数和含金属量降低;胶质沥青质转化率与渣油转化率呈现良好的线性关系,随着渣油转化率增大...  相似文献   

14.
以中东含硫渣油为原料,在高压釜中进行不同反应类型和不同分散型催化剂的悬浮床加氢裂化反应,分析产物分布及其中总硫分布。加氢活性高的催化剂具有较强的抑制反应产物二次裂解的能力,并且有较强的硫元素脱除能力。反应添加硫化剂对于含硫渣油的裂化产物及总硫分布没有明显的影响;加入供氢剂抑制了缩合反应及裂化反应,同时促进了硫的脱除。  相似文献   

15.
渣油两段悬浮床加氢裂化   总被引:3,自引:1,他引:2  
因悬浮床加氢裂化反应器中存在着分别以加氢反应和裂化反应为主要反应的两个分段,即加氢段和裂化段,所以提出了两段悬浮床加氢裂化的概念。让原料在同一个反应器中进行两个反应,适当提高加氢段的温度,降低裂化段的温度;或者让原料在较小的高温反应器中实现加氢,在较大的反应器中实现裂化。在裂化段前可注入适当的抑焦剂。探讨了两段悬浮床加氢裂化提高渣油的转化率,降低甲苯不溶物产率的原理。  相似文献   

16.
对影响沸腾床渣油加氢转化率的因素进行了详细研究,以伊朗减压渣油为原料,分别在间歇式高压釜和沸腾床小型装置上进行实验考察。结果表明:提高反应温度和增加反应时间,可以提高渣油转化率。渣油转化率对反应温度非常敏感,与反应温度呈线性关系,反应温度提高1℃,转化率可增加1~2百分点。反应温度和反应时间对产品分布也有很大影响。随着反应温度升高和反应时间延长,产品中轻质馏分收率增加,重质馏分收率减少。反应压力对渣油转化影响不大。在反应温度相同的条件下,经过第二段加氢后,500℃以上渣油转化率还可提高10百分点。  相似文献   

17.
分别采用核磁共振氢谱(1H-NMR)和光学显微镜测定了典型中东渣油及其不同转化深度加氢生成油的平均分子结构参数和沥青质聚集状态,结合族组成和不稳定性参数,考察了渣油沸腾床加氢转化过程中的分子结构变化与稳定性的关系。结果表明:对所选渣油,在61.87%~79.71%转化率范围内,渣油平均分子的缩合程度先增加后降低,这与沉积物的形成及脱离油相过程有关;渣油经沸腾床加氢转化后,沥青质的聚集程度显著增加,其团簇直径随转化率的提高而增大,最大直径可达58.97μm;另外,在沸腾床加氢转化过程中,渣油中具有稳定沥青质作用的胶质明显减少,而不利于沥青质稳定的饱和分含量显著增加,该趋势随转化率的提高而加剧,这将造成渣油体系稳定性的持续下降。  相似文献   

18.
开发了采用非对称轮换式保护反应器的固定床渣油加氢技术以及轮换保护反应区专用脱金属催化剂和催化剂器外硫化技术,并以不同金属含量的渣油为原料,在固定床中型装置上进行了轮换保护反应区和主反应区的催化剂活性稳定性以及工艺原料适应性等试验。结果表明:主反应区的催化剂级配具有良好的活性稳定性,主反应区的运转周期可达到3年;非对称轮换式保护反应器的固定床渣油加氢技术原料适应性好、杂质脱除率高、产品分布好,是延长固定床渣油加氢运转周期优选的技术。  相似文献   

19.
分别以石蜡基青海原油渣油(简称青海渣油)和中间基沙特阿拉伯轻质原油渣油(简称沙轻渣油)为原料,采用RHT系列渣油加氢催化剂进行了1 500 h 稳定性试验,采用傅里叶变换离子回旋共振质谱仪和核磁共振波谱仪分析原料和加氢生成油的分子结构差异及试验后催化剂(简称试验旧剂)上积炭组成。结果表明:青海渣油分子芳烃侧链多且长,通过初期快速升温可使其侧链断裂,改善其内扩散性能,且生焦倾向降低;沙轻渣油分子芳烃含量高,侧链较短,低温时即可达到较高杂质脱除率,高温则易生成结焦前躯物,造成催化剂快速失活;与青海渣油相比,沙轻渣油加氢试验旧剂的积炭量更大,硬炭比例更高。对青海渣油加氢反应的温度分布进行优化,快速升高脱金属催化剂床层温度,降低脱硫剂反应温度,形成前高后低的温度分布,结果表明优化后方案的加氢生成油性质更优。  相似文献   

20.
以塔河常渣和沙轻减渣为原料,在高压釜反应器中研究了反应时间对渣油加氢反应过程的影响。结果表明,在实验所研究的反应时间内,渣油转化率、汽柴油收率及硫、氮脱除率均随反应时间的延长而增加,但由于反应物浓度和催化剂活性的降低,反应时间超过2 h后,以上数据的增幅趋缓。延长反应时间,焦炭产率升高,且会影响装置的处理量,故渣油加氢装置的反应时间不宜过长。硫含量高的沙轻减渣更易于发生弱含硫化学键的断裂而生成较小的分子结构,所以沙轻减渣的转化率及硫、氮脱除率均高于塔河常渣。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号