首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 145 毫秒
1.
通过分析某煤柴油加氢装置高压换热器(E-104)管束失效案例,初步判断系统存在铵盐垢下腐蚀风险。建立了反应流出物系统的仿真模型,由此分别计算失效换热器管程、壳程发生铵盐结晶的风险,结果表明:所研究系统中不存在NH4HS结晶风险;系统铵盐结晶温度随腐蚀性元素含量的提高稍有提高;在原工况、新工况下,热高压分离气系统的NH4Cl结晶温度分别为177℃和181℃,冷低压分离油系统的NH4Cl结晶温度分别为178℃和182℃,在原工况操作条件下,E-104的管、壳程均存在NH4Cl结晶的风险。通过正交试验确定各因素对NCl结晶温度的影响程度由高到低的顺序为:Cl元素含量>N元素含量>系统气相流量>系统操作压力,并进一步得到NH4Cl结晶温度随Cl、N含量的变化规律,利用此规律进行预测将大大提高对NH4Cl结晶温度的预测效率。  相似文献   

2.
某石化公司0.2 Mt/a润滑油加氢装置定期检查中,发现加氢高压换热器管程存在严重腐蚀现象,主要集中在换热管下半部温度较低区域,经腐蚀产物分析,主要是NH4Cl结晶垢下腐蚀。对装置运行状况分析表明,影响NH4Cl结晶因素主要有原料油中氯含量、换热器注水效果、换热器操作温度等。在换热器防腐升级改造中,采用专用脱氯剂,有效降低了原料油的氯含量,提高管程出口温度降低了NH4Cl结晶的可能性,改善注水冲洗效果降低了NH4Cl浓度及在换热面停留时间,材质升级改造提高了换热面金属抗腐蚀能力。升级改造后的3 a运行期间,换热器管程侧未出现铵盐结晶,防止了铵盐垢下腐蚀的发生,保证了润滑油加氢装置的正常运行。  相似文献   

3.
通过分析加氢反应流出物系统的铵盐结晶过程,建立铵盐结晶速率的计算模型,将其与Aspen Plus结合进行二次开发,利用Aspen Plus强大的物性数据库定量计算了反应流出物多相流体系铵盐结晶速率,并分析不同原料组成及工况下的NH4Cl与NH4HS结晶速率的变化规律。结果表明,在加氢反应流出物温度较高时,铵盐结晶速率一般为0;进入冷换设备后,随反应流出物温度的降低,开始出现铵盐结晶;开始结晶时的铵盐结晶速率最大,后随着温度的降低,铵盐的结晶速率迅速降低。加氢反应流出物系统铵盐起始结晶温度随着原料油氮、氯或硫质量分数的增加而增加。加氢反应流出物系统NH4Cl的起始结晶温度随系统操作压力的升高而增加,而最大结晶速率随着系统压力的升高逐渐下降,最大结晶速率一般出现在160~210℃的范围内;NH4HS的最大结晶速率一般出现在30~60℃,最大结晶速率比NH4Cl高约4~5个数量级。典型案例应用表明,所建立的计算模型准确可靠。  相似文献   

4.
渣油加氢装置因原料劣化腐蚀性强,设备长期处于极端运行工况下,导致冷换设备铵盐腐蚀性风险大。以沸腾床渣油加氢系统空气冷却器(简称空冷器)为研究对象,采用NRTL-RK模型构建多组分体系下反应流出物系统化学离子-平衡模型,并通过工艺过程关联分析和数值模拟分析相结合的方式,对系统内铵盐结晶腐蚀风险进行评估。计算结果表明,空冷器存在NH4Cl腐蚀风险,结晶温度为169~187℃,且铵盐结晶速率随着温度降低不断增加,极限工况下为0.22 kg/h。空冷器对流换热模型通过组分运输方程和冷凝模型构建,数值模拟结果表明,随着流动的持续,最大的传质系数(1.52×10-4 m/s)和腐蚀速率(0.43 mm/a)出现在出口集合管底部。  相似文献   

5.
针对加氢精制装置反应流出物高压换热器铵盐沉积和腐蚀问题,系统分析氯化物的来源及腐蚀原因,通过增加原料中间罐降低原料中水含量、提高系统压力、增加循环氢流量、提高反应流出物/混合进料换热器出口温度、增加反应流出物/低分油换热器前注水量、降低总注水量至设计范围内等一系列措施的实施,有效解决了该加氢装置反应流出物系统的铵盐沉积和腐蚀问题,同时单位能耗从596.87 MJ/t降到了451.44 MJ/t。  相似文献   

6.
为解决加氢装置换热器中NH_4Cl结晶机理不清、结晶温度预测难、实际指导关联性差的问题,以某加氢改质装置换热器失效为研究对象,采用工艺过程模拟,基于实际操作工况进行工艺计算分析,明确加氢换热器NH_4Cl结晶失效风险,揭示NH_4Cl结晶沉积腐蚀机理,同时确定换热器NH_4Cl结晶温度主要影响因素。运用偏最小二乘法构建多变量下加氢换热器NH_4Cl结晶温度预测模型。结果表明,换热器E1103A/B中存在NH_4Cl结晶风险,结晶温度为188℃。反应流出物系统中压力、氯含量及氮含量是影响NH_4Cl结晶温度的主要因素,所建立的预测模型具有良好的精度(最大相对误差为2.73%,平均相对误差MRE为1.34%,均方根误差RMSE为3.09),实现了NH_4Cl结晶温度的定量预测。  相似文献   

7.
加氢原料中含有氯化物,使得加氢反应流出物系统(如高压换热器等)极易发生铵盐堵塞及腐蚀问题,严重时会造成管束内介质腐蚀泄漏甚至爆管事故,影响装置的安全稳定运行。以某炼化企业汽柴油加氢装置高压换热器为研究对象,针对该工况下NH_4Cl的结晶现象进行了模拟计算和试验研究,计算得出了该工况下NH_4Cl结晶温度,继而判断出结晶位置,并依据现场实际情况提出了适宜的注水方案;根据动态腐蚀试验结果,提出了以工艺防腐蚀和材质升级为主的防护建议,为相关生产操作提供基础数据和理论支撑。  相似文献   

8.
采用流程模拟软件HYSYS,运用物料守恒原理建立闪蒸过程模型,得到加氢裂化反应流出物的油-气-水三相平衡体系。利用闪蒸过程模型计算得到原料硫、氮、氯含量,注水量,压力等因素对加氢反应流出物空气冷却器(REAC)系统中NH4Cl、NH4HS沉积温度的影响情况。结果表明:NH4Cl沉积主要发生在REAC系统入口位置,NH4HS沉积主要发生在REAC系统出口位置;NH4Cl的沉积温度受原料氯含量的影响较大,强化原油的脱氯过程、将注水点设置在NH4Cl的沉积位置以前并保持有25%(φ)的液态水是降低NH4Cl沉积风险的有效方法;硫含量及注水量是影响NH4HS沉积温度的主要因素,加强循环氢脱硫并适当提高系统注水量,使NH4HS的沉积温度低于系统的操作温度可有效避免NH4HS沉积。  相似文献   

9.
利用HYSYS软件对柴油加氢装置反应流出物系统氯化铵结晶进行了模拟计算,计算得出了氯化铵结晶的温度,确定了铵盐结晶的部位,分析了不同Cl和N含量对铵盐结晶温度的影响,提出了控制铵盐结晶的措施。  相似文献   

10.
针对油田常用的亚硝酸钠和氯化铵自生氮气体系,通过常压/高压产气实验探究了不同因素对产气性能的影响。研究结果表明:反应物摩尔浓度比为1:1时,反应物浓度、氢离子浓度及温度越高,反应速率及产气量越高,反应初始压力对体系产气量影响较小。自生氮气反应的生热能力随着反应物浓度、氢离子浓度和初始反应温度的增加而增加,反应体系的峰值温度也随之升高。NaNO2和NH4Cl体系的反应动力学方程为dc/dt=-7.103×107c(H+1.329 1c02.094 9e(-51.28/RT);NaNO2和NH4Cl混合反应中存在H2N-NO和HN=NOH两种中间产物,NH3与N2O3经SN2亲核取代历程形成H2N-NO的反应决定了反应速率,H2N-NO转化得到的HN=NOH可自发分解生成最终产物N2和H2O。  相似文献   

11.
设计、搭建了循环流动实验装置,模拟污水汽提装置塔顶循环系统腐蚀环境,采用电化学测试方法和表面分析技术,对316L不锈钢(316L SS)在污水介质中的腐蚀行为和特性进行了研究.实验结果表明,316L SS在污水介质中的腐蚀形态为局部点腐蚀,腐蚀表面具有弥散分布的点蚀坑.污水介质中NH4Cl含量和介质流速是影响316L ...  相似文献   

12.
针对在保持高选择性的前提下抑制催化剂的快速积炭失活问题,利用X射线衍射(XRD)、氨气程序升温脱附(NH3-TPD)、N2物理吸附-脱附(BET)和吡啶吸附傅里叶变换红外光谱(Py-FT-IR)等手段对水热处理后的HZSM-5催化剂进行表征,并详细考察了水热处理条件对反应性能的影响。结果表明,水热处理温度和时间对催化剂稳定性有显著影响,最佳水热处理条件为T=550 ℃、t=3 h、MHSVH2↓O=1 h-1。其中HT-550-3-1催化剂稳定性表现最好,反应32 h后乙苯转化率仅降低了2.6百分点,热重分析发现其炭质量损失率(1.38%)远低于HZSM-5的炭质量损失率(5.08%)。在最佳水热处理条件下的HZSM-5分子筛经过硅(Si)、镧(La)复合改性制得的HT-9%Si-4%La催化剂,在反应温度340~370 ℃、压力101.325 kPa、乙苯质量空速5 h-1n(C8H10)/n(C2H4)=5、n(N2)/n(C2H4)=11.3的反应条件下,乙苯转化率高于12.1%,对二乙苯选择性超过97.0%,催化剂稳定运行454 h。  相似文献   

13.
采用X射线荧光光谱、N2吸附-脱附、吡啶吸附红外光谱等分析手段对催化裂化催化剂生产过程所产生的废渣进行分析,并研究了废渣脱除杂质的处理工艺;利用优化处理的废渣或/和高岭土为载体、分子筛为活性组分经喷雾干燥制备催化裂化催化剂,分析催化剂的物化性质,并利用固定流化床装置评价催化剂性能。结果表明:pH为3.0、搅拌时间为20 min、NH4Cl投料比为20%、温度为60℃、洗涤介质为NH4Cl、先洗涤后焙烧再洗涤是处理催化剂废渣的最佳工艺条件;在反应温度为480℃、剂油质量比为7.5、质量空速为4 h-1、原料油为大庆减压蜡油的条件下,与以高岭土为载体的催化剂相比,综合考虑优选载体中废渣质量分数在10%~20%的催化剂具有更强的重油转化能力,产物液体收率和汽油选择性更高,汽油组成中异构烷烃含量高、烯烃含量低。  相似文献   

14.
针对油田常用的亚硝酸钠和氯化铵自生氮气体系,通过常压/高压产气实验探究了不同因素对产气性能的影响。研究结果表明:反应物摩尔浓度比为1:1时,反应物浓度、氢离子浓度及温度越高,反应速率及产气量越高,反应初始压力对体系产气量影响较小。自生氮气反应的生热能力随着反应物浓度、氢离子浓度和初始反应温度的增加而增加,反应体系的峰值温度也随之升高。NaNO2和NH4Cl体系的反应动力学方程为dc/dt=-7.103×107c(H+1.329 1c02.094 9e(-51.28/RT);NaNO2和NH4Cl混合反应中存在H2N-NO和HN=NOH两种中间产物,NH3与N2O3经SN2亲核取代历程形成H2N-NO的反应决定了反应速率,H2N-NO转化得到的HN=NOH可自发分解生成最终产物N2和H2O。  相似文献   

15.
基于工艺关联过程及流体仿真模拟,分析了某石化企业加氢反应产物空冷器(REAC)系统出口管道中多元腐蚀流分布规律,建立了包含铵盐结晶温度、NH4HS质量分数、最大壁面剪切应力、水相体积分数等参数的流动腐蚀表征预测体系,并通过测量腐蚀产物及腐蚀余量等来验证预测模型的准确性.结果表明:正常工况下,空冷器出口管道内无铵盐结晶风...  相似文献   

16.
加氢空冷器是炼油化工企业的关键设备之一.近年来中国进口原油以高硫高酸原油为主,原油种类超过150种,加工过程中还存在原油掺炼的情况,工况弹性大、风险突出,因此研究铵盐结晶规律以及注水工艺防护措施成为维护空冷器设备安全运行的重要内容.以某石油化工厂加氢空冷系统入口集合管为对象,依据质量守恒,基于逆序倒推法,建立烃、水两相...  相似文献   

17.
根据现场工艺流程搭建Aspen模拟计算模型,将企业提供的工艺相关参数和日常运行工况等数据输入仿真模型内,获取该工况下的多相流的物性参数,从而预测换热器区域发生的腐蚀失效情况,该模型主要预测HCl引起的露点腐蚀和NH4Cl引起的结晶沉积。借助传热计算软件HTRI,构建换热器热力学模型,将数据导入后得到管程、壳程、壁面层的温度分布,进而判定换热器失效位置为距管程进口约1.55 m后的范围。为了减缓腐蚀和保证装置安全长周期运行,提出了改善工艺操作和配管平衡方案等措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号