首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
在煤直接液化循环溶剂加氢原料中掺兑煤焦油蒽油,采用300 mL固定床加氢实验装置考察蒽油掺兑量对循环溶剂性质的影响;采用05 L高压釜煤液化实验考察蒽油掺兑量对煤液化反应的影响。结果表明,在相同的加氢条件下,在煤直接液化循环溶剂加氢原料中掺兑5%(质量分数)的蒽油,循环溶剂的芳碳率(fa)降幅337%,供氢指数(PDQI)增幅368%,供氢性能得到提高,但加氢反应氢耗增加,循环溶剂密度、黏度及硫、氮含量增大。采用此循环溶剂进行煤液化时,煤的转化率提高了015%,煤液化油收率增加了098%。随着蒽油掺兑质量分数的增加,循环溶剂供氢性能逐渐减弱,煤液化转化率和液化油收率逐渐减小,循环溶剂密度、黏度及硫、氮含量持续增大。  相似文献   

2.
 采用煤焦油馏分油中的洗油与脱晶蒽油以质量比1:1混合的油为原料,在处理量500kg/h的加氢稳定中试装置上进行洗油与脱晶蒽油混合油的加氢稳定实验。利用常温常压旋转黏度仪测定混合油加氢所得溶剂的黏度,考察其成浆性能;采用0.5L搅拌式高压釜考察了混合油不同次数加氢所得溶剂的煤直接液化反应效果。结果表明,洗油与脱晶蒽油的混合油经过加氢处理后,表观黏度降低,用来配制油煤浆表现出良好的成浆性能;用作煤直接液化溶剂具有较强的供氢性能,以经过3次加氢后所得溶剂作为煤液化溶剂,可得到89.47%煤液化转化率,63.06%油收率。洗油和脱晶蒽油混合油加氢后所得溶剂是一种效果良好的煤直接液化开工用起始溶剂。  相似文献   

3.
煤炭直接液化起始溶剂油的研究   总被引:1,自引:0,他引:1  
针对神华集团有限责任公司在建的煤直接液化示范工程所需起始溶剂量大、煤炭焦化产溶剂不足的问题,在0.1 t/d小试装置(BSU)和6.0 t/d工艺开发装置(PDU)上对重油催化裂化回炼油芳烃抽提装置生产的重芳烃作为煤炭直接液化的起始溶剂进行考察.结果表明,重油催化裂化回炼油芳烃抽提装置生产的重芳烃经过多次加氢处理后,其密度和组成与煤液化自产溶剂类似,可以作为煤炭直接液化装置的起始溶剂.在PDU上使用该溶剂,当压力为17 MPa、反应温度为450 ℃左右时,煤转化率达90.42%,液化油收率为56.04%.  相似文献   

4.
通过在150 kg/d悬浮床加氢试验评价装置上开展某炼油厂FCC油浆与西湾煤共炼试验,研究FCC油浆与西湾煤共炼时的匹配性,剖析油煤浆成浆性和油煤共炼的试验结果,为煤直接液化新途径的开发提供基础数据.试验结果表明,该炼油厂FCC油浆与西湾煤共炼时,油煤浆浓度高达45%时,依然具有稳定的成浆性,油煤浆中加入0.55%活性炭添加剂、1.80%赤泥催化剂(以原料量为基准),在反应空速为0.5 h-1、反应温度468℃、氢油比3000 L/kg的反应条件下,整体液体收率为72.93%,煤转化率为88.8%.与传统煤直接液化相比,FCC油浆与西湾煤共炼具有耗氢量低、液体收率高、煤转化率高的优势.  相似文献   

5.
考察了活性金属种类、含量及改善金属分散性能对煤液化油加氢处理催化剂性质和性能的影响,结果表明:采用活性金属Mo-Ni体系制备的催化剂具有较好的加氢活性;随着金属含量的增加,生成油中芳碳含量逐渐减小,综合考虑催化剂金属含量的增加对流化及反应性能的影响,选择金属含量为(基准+3);加入助剂能显著改善金属的分散率,但同时也降低了催化剂的相对总酸值;随着助剂含量的增加,催化剂相对总酸值由0.952下降到0.868,生成油芳碳摩尔分数由45.34%增加到46.70%.煤液化油经过催化剂加氢处理后,其全馏分芳碳摩尔分数从57.03%降到25.69%,生成油(350~ 500℃)芳碳摩尔分数为42.56%,生成油性质得到了改善,可以作为煤液化单元的供氢性溶剂油.  相似文献   

6.
 选用一种催化裂化(FCC)芳烃抽提装置生产的芳烃萃取油作为煤液化开车起始溶剂的原料,在0.1t/d连续装置上进行的煤液化实验。利用色质联用仪解析其组成和结构,应用常温常压黏度仪考察了其成浆性。结果表明,芳烃萃取油具有多环芳烃含量高的特点, 3次加氢后的芳烃萃取油与煤液化加氢循环溶剂的结构组成十分接近。采用三次加氢萃取油制备的煤浆具有良好的成浆性、输送性和反应性,与煤液化加氢循环油参与煤液化的效果相当, 是理想的煤液化起始溶剂。  相似文献   

7.
以减压渣油为原料,催化裂化加氢重循环油和工业馏分油窄馏分为供氢溶剂,采用溶剂脱沥青-液相加氢组合工艺,可将减压渣油高效转化为轻质油。结果表明:焦化蜡油(410~430 ℃)、FCC油浆(450~470 ℃)、糠醛抽出油(430~450 ℃)、重循环油(410~430 ℃)窄馏分的供氢能力依次为2.28,2.61,4.86,2.73 mg/g,远低于四氢萘(7.90 mg/g),而加氢重循环油(0.948 7 g/cm3)供氢能力(7.42 mg/g)与后者相近;采用组合工艺,以加氢重循环油为供氢溶剂,减压渣油的综合转化率为90.84%,轻质油收率(质量分数)可达89.35%,焦炭得到有效抑制。  相似文献   

8.
催化裂化芳烃萃取油用作煤液化起始溶剂   总被引:1,自引:0,他引:1  
选用一种催化裂化(FCC)芳烃抽提装置生产的芳烃萃取油作为煤液化开车起始溶剂的原料,在0.1t/d连续装置上进行煤液化实验。利用色质联用仪解析其组成和结构,应用常温常压黏度仪考察了其成浆性。结果表明,芳烃萃取油具有多环芳烃含量高的特点,3次加氢后的芳烃萃取油与煤液化加氢循环溶剂的结构组成十分接近,采用3次加氢萃取油制备的煤浆具有良好的成浆性、输送性和反应性,与煤液化加氢循环油参与煤液化的效果相当,是理想的煤液化起始溶剂。  相似文献   

9.
加氢精制与加氢改质都是煤液化加氢稳定油高附加值利用的有效途径。实验结果表明,两种工艺在产物分布、化学氢耗与装置液体收率以及产品质量等方面存在明显差异。与加氢精制工艺相比,加氢改质工艺得到的高附加值产品(重石脑油+喷气燃料)收率高、喷气燃料与柴油产品品质更佳、重石脑油芳烃潜含量相对较低,但仍为优质的重整原料;在反应温度360℃/380℃、体系压力16.0 MPa、体积空速0.69 h~(-1)、氢油体积比800∶1的反应条件下重石脑油与喷气燃料总收率为42.5%,重石脑油芳烃潜含量为76.11%,喷气燃料烟点为26 mm、改质柴油十六烷值提升到49,表明加氢改质为更优的煤液化加氢稳定油处理工艺。  相似文献   

10.
煤炭直接液化起始溶剂油的选择   总被引:1,自引:0,他引:1  
在煤炭直接液化过程中,用于配制煤浆的溶剂起者重要的作用,神华煤炭直接液化工艺采用了全加氢的供氢性溶剂。起始溶剂的选择非常重要,BSU装置和PDU装置的运转结果表明,重油催化裂化回炼油芳烃抽提装置生产的重芳烃经过几次加氢处理后可以作为煤炭直接液化装置的起始溶剂。  相似文献   

11.
对催化裂化回炼油三段窄馏分的供氢能力进行测定,选取供氢能力最强的一段进行加氢处理,以加氢后的催化裂化回炼油窄馏分为焦化供氢剂,通过中试试验考察其供氢效果。结果表明:三段窄馏分中,小于400 ℃馏分供氢能力最强;加氢处理能够进一步提高其供氢能力,以加氢后回炼油小于400 ℃馏分作为供氢剂能够使液体收率提高1.32百分点,焦炭收率降低2.45百分点。  相似文献   

12.
阐述了神华煤炭直接液化项目的氢气需求和为提高氢气利用率采取的措施。该项目采用两套干煤处理能力为2 000 t/d的煤气化制氢装置提供煤炭液化和液化油品加氢等所需的氢气。煤炭液化装置采用膜分离系统将循环氢的H2纯度从86.64%提高到96.95%,在满足第二液化反应器采用内循环的要求外,补充氢量从28.934t/h降低到19.186t/h。采用变压吸附装置(PSA)回收煤炭液化、溶剂加氢稳定和加氢改质装置的富氢排放气中的氢气。建议对PSA尾气中的氢气进一步回收利用,提高项目的氢气利用率。  相似文献   

13.
以煤直接液化加氢稳定油为原料,采用两种型号的加氢精制催化剂匹配进行两段加氢精制生产工业白油的试验研究。结果表明:在一段加氢精制反应过程中,反应温度、反应压力和体积空速的变化对脱硫、脱氮和芳烃饱和反应有较大的影响,在反应压力为15 MPa、反应温度为380 ℃、体积空速为0.4 h-1的工艺条件下,产品油中的硫、氮质量分数分别为1.6 μg/g和1.5 μg/g,脱硫率和脱氮率分别达到97.72%和99.81%,此时产品中的芳烃质量分数为31.2%,芳烃饱和率为55.9%;二段深度加氢精制后,产品油中的芳烃质量分数可以降低到5%以下;最终的加氢产品油在实沸点蒸馏装置上切割后,得到的280~300 ℃、300~320 ℃馏分油能分别满足5号、7号工业白油(Ⅰ)的行业标准要求。  相似文献   

14.
以中低温煤焦油轻油为原料,采用直接加氢-溶剂脱蜡耦合工艺制备煤基蜡;在三管式固定床加氢反应器,考察反应温度、反应压力及空速对煤焦油直接加氢产物性质及正构烷烃含量的影响;采用溶剂脱蜡技术得到煤基蜡产品,并对其熔点、正构烷烃组分含量进行测定。结果表明:煤焦油直接加氢-溶剂脱蜡耦合工艺的最优条件为反应温度380 ℃,反应压力13 MPa,液体体积空速0.3 h-1,酮苯质量比8:1,剂油质量比5:1;在最优条件下制备的煤基蜡熔点为50.7 ℃,正构烷烃质量分数为93.7%。  相似文献   

15.
 通过含大量沥青质(PAA)的煤液化残渣(CLR)在微型反应釜的加氢试验,考察了温度、气氛、氢初压以及反应时间对CLR中油(Oil)、沥青质(PAA)和四氢呋喃不溶有机质(THFIS)加氢性能的影响。结果表明,CLR中的重质组分—PAA和残余煤可进一步加氢转化成Oil,CLR–A、B中PAA最高转化率分别为77.43%和80.54%;氮气压力的存在能促进CLR中残余煤转化成PAA,高压氢有利于残余煤和PAA加氢转化成Oil。试验得出,在本实验范围内CLR-A、B的适宜加氢温度均为450℃,最佳氢初压均为6 MPa,最优反应时间分别为60min、40min。  相似文献   

16.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号